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Ldttinger Liquid Theory as a Model of the Gigahertz
Electrical Properties of Carbon Nanotubes

P. J. Burke

Abstract—\We present a technique to directly excite Luttinger In this model, the creation of an electron is equivalent to exciting
liquid collective modes in carbon nanotubes at gigahertz frequen- an infinite number of 1-D plasmons. Much theoretical work [1]
cies. By modeling the nanotube as a nano-transmission line with 55 gone into calculating the experimental consequences of the
distributed kinetic and magnetic inductance as well as distributed S h . .
quantum and electrostatic capacitance, we calculate the complex non-Fermi liquid behavior of 1-D systems. The main experi-
frequency-dependent impedance for a variety of measurement ge- mental consequences calculated and observed [8] to date are
ometries. Exciting voltage waves on the nano-transmission line is the power-law dependence of conductivity on temperature and
equivalent to directly exciting the yet-to-be observed one-dimen- the power-law dependence of tunneling current on bias voltage,
sional plasmons, the low energy excitation of a Luttinger liquid. \yhep the contact of three-dimensional (3-D) macroscopic leads

Our technigue has already been applied to two-dimensional plas- . . . )
mons and ghould work Wg” for onep-glimensional plasmons. TEbes to the 1-D system is through high resistance tunnel barriers. The

of length 100 microns must be grown for gigahertz resonance fre- POWer-law exponent is generally characterized by a dimension-
quencies. Ohmic contact is not necessary with our technique; ca- less parameterg.” For noninteracting electrong, = 1, while
pacitive contacts can work. Our modeling has applications in po- for interacting electronsg; < 1. To date, the experimental evi-
tentially Terahertz nanotube transistors and RF nanospintronics.  jance for the theory that the low-lying excitations of interacting

Index Terms—Nanoelectronics, nanotechnology, nanotube, electrons in one dimension are collective plasmon oscillations,
nanowire, spintronics. while significant, is somewhat indirect.

It is the purpose of this paper to describe a technique that
can be used to directly excite the 1-D plasmons using a mi-
) _crowave signal generator. (Similar proposals have appeared in
O NE OF THE MOST fundamental unsolved questions ighe Jiterature already [9]-[{11].) This technique was recently ap-

modern condensed matter physics is: What is the groupfled to measure collective oscillations (plasmons) in a two-di-
state of a set interacting electrons, and what are the low-lyifgsnsional (2-D) electron gas, including measurements of the
excitations? By far the most successful theoretical treatmentfy plasmon velocity, as well as the temperature and disorder
interactions is Landau’s theory of Fermi liquids, which posit§ependent damping [12]. Our goal in this paper is to describe
that the low-lying excitations of a Fermi liquid are not in fach technique to extend these measurements to one-dimensional
electrons, but “quasi-particles” which, to good approximatioystems, and to discuss a method to directly measure the 1-D
are noninteracting. The reason that the quasi-particles canjfp&smon velocity, and hence™in a Liittinger liquid. In order to
treated as noninteracting is that the inverse quantum lifetime @ cyss this technique, one of our goals in this paper is to provide
a quasi-particle is generally less than its energy, so that the CgRreffective circuit model for the effective electrical [dc to giga-
cept of an independent quasi-particle is well defined. Landathgrtz to terahertz] properties 1-D interacting electron systems.
Fermi liquid theory has served physicists well in two and thragyhile we restrict our attention to metallic SWNTSs, the general
dimensions for many decades. Unfortunately, it has long beghproach can be used to describe semiconducting carbon nan-
known that Landau’s Fermi liquid theory breaks down in one-disybes, multiwalled carbon nanotubes, quantum wires in GaAs
mensional (1-D) systems [1], such as those formed in singlgsterostructures [13], and any other system of 1-D interacting
walled carbon nanotubes (SWNTs) [2]. electrons.

To deal with this problem, Tomonaga [3], and later Littinger |y gur recent 2-D plasmon work, we suggested a trans-
[4], described a simplified model for interacting electrons ifyission-line effective circuit model to relate our electrical
one dimension, which was exactly solvable. The method Uﬂ%bedance measurements to the properties of the 2-D plasmon
was that of bosonization [5], [6]. The boson variables descrig|ective excitation [12], [14]-[16]. There, we measured
collective excitations in the electron gas, calle@® plasmons e kinetic inductance of a 2-D electron gas, as well as its
Later, Haldane [7] argued that the bosonization description Wggtributed electrostatic capacitance to a metallic “gate” by
generically valid for the low energy excitations of a 1-D systemirectly exciting it with a microwave voltage. The distributed
of interacting electrons, coining the term the “Littinger "qUid-"capacitance and inductance form a transmission line, which is

an electrical engineer’s view of a 2-D plasmon.
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our 2-D experiments) as well as théstributedkinetic induc- Magnetic | A

tance of a SWNT is derived. (In [20] and [21], the cONCef—m— =/ WK K T —"K KNI X X N —000 0 o = = - — -
of a lumped (as opposed to distributed) quantum capacitar L Lk C i s itanes

and quantum/kinetic inductance is introduced.) In [18], [19] tF Q I I
tunnel conductance at high voltages is related to electrical | C g Flectrostatic capacitance T

in a multiwalled nanotube. In both of these discussions, the dﬁ@. 1. Circuit diagram for 1-D system of spinless electrons. Symbols are
tributed inductance and capacitance per unit length form a traBsfined per unit length.
mission line, which is again an electrical engineer’s description
of a 1-D plasmon. It is the goal of this manuscript to describe
how we can excite 1-D plasmons directly with a microwave
voltage, calculate the expected results for a variety of possible
measurement geometries (including capacitive as well as tun-
neling electrical contacts), and discuss how our technique can
be used to directly measure the Luttinger liquid paramegér “
We proceed as follows. First, we rederive the results of ref-
erence [17] for a spinless 1-D quantum wire, by calculating thgy. 2. Geometry of nanotube in presence of a ground plane.
kinetic inductance, electrostatic capacitance, and quantum ca-

acitance per unit length. We extend the results of [17] by con- _ o .
P P g [17] by (EI ctrons are spinless. At ac, the circuit model is not well estab-

sidering the magnetic inductance per unit length, as well asﬁ . . L .
characteristic impedance. We then proceed to discuss spin-ﬁ ed experimentally. However, theoretically it is believed to be
guivalent to a transmission line, with a distributed “quantum”

electrons in an SWNT, and derive four coupled equations 6 : T . .
pacitance and kinetic inductance per unit length. It is gener-

the voltages on each of the four quantum channels in an SW { believed 1] that the effect of elect lectron int i
following [19]. We diagonalize these equations of motion an y believe [1] 1at the etiect ot electron-electron interactions
be included in the transmission line circuit analogy as an

solve for the spin/charge modes. These results are not me . . X
to be rigorous many-body calculations, but a way to translaf ectrostatic capacitance. Furthermore, there will also be a mag-
’ tic inductance.

theoretical ideas about interacting electrons in one dimensid . L L .
he effective circuit diagram we are proposing is shown in

into measurable predictions. For more rigorous discussions,}_he 1 Bel il di h of the f tributi ¢
reader is referred to [9][11] and [20][23]. I9. 1. Below, we will discuss each of the four contributions to

In Section Il of this paper, we proceed to discuss Odpe total circuit, and then discuss some of its general properties,
technique to directly excite tﬁese 1-D plasmons by settirs ch as the wave velocity and characteristic impedance. We will

up standing-wave resonances in SWNTs of finite lengt stnclt(ourfsglve?tfithlt?tc;]ase pfawwe ngr? gro;Jhnd plane ftor
as we did in the 2-D plasmon case. We calculate explicit € sake of simplicity. €re 1S no ground piane, the parameter

measurable electronic properties of 1-D plasmons that alfé, LS

amenable to the measurement technique we developed for ﬁgﬁla%e b_y thhe Iengtthf tge 1-D wire itself. The geometry we

plasmons, including the nanotube dynamical impedance (rggps' €ris shownin =g. <.

and imaginary) as a function of frequency, as well as the 1-D ic Ind

plasmon damping, wave velocity, and Luttinggf’ factor. We A. Magnetic Inductance

discuss what experimental parameters are needed to perforim the presence of a ground plane, the magnetic inductance

our experiment, and also how the low (sub-GHz) frequenggr unit length is given by [25]

properties of nanotubes may be used to give some insight

into the 1-D plasmon. Finally, we _discuss possible pra_ctical Lo = H oosht (2_h> ~ " (ﬁ) 1)

consequences [24] of the results in nanotube electronic and 27 d 27 d

micro/nano-mechanical high-frequency circuits. Our measureh is th be di hdis the di h

ment technique could provide direct evidence for collecti\)‘@‘ ere((ijlslt € Ta_lrnhotu € diameter ands t Z |sta_nr§:_e tfo/t fe

mode behavior of interacting electrons in one dimension, th@round piane. N apprOX|_mat|on IS good to wit in 17 tor

“Luttinger liquid.” h > 2d. This is calculated using the standard technique of set-
ting the inductive energy equal to the stored magnetic energy

" (the distance from the wire to the ground plane) should be

II. CIRCUIT MODEL FOR SPINLESSELECTRONS IN A lLIQ _ 1 B(x)?d*s )

ONE-CHANNEL QUANTUM WIRE 2 21

The dc circuit model for a one-channel quantum wire of noand using the relationship betweémnd B in the geometry of
interacting electrons is well known from the Landauer—Biittikénterest, in this case a wire on top of a ground plane. For a typical
formalism of conduction in quantum systems. The dc conduexperimental situation, the nanotube is on top of an insulating
tance is simply given by?/h. If the spin degree of freedom is (typically oxide) substrate, with a conducting medium below.
accounted for, there are two “channels” in a quantum wire: spfihe finite conductivity of the conducting medium will be dis-
up and spin down, both in parallel. We postpone our discussioussed below.) A typical oxide thickness is between AGthd
of spin until the next section, and assume for the moment the:.m, whereas a typical nanotube radius is 1 nm. Because the
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numerical value ofZ,, is only logarithmically sensitive to the This is calculated using the standard technique of setting the
ratio of d/h, we can estimate it within a factor of three as capacitive energy equal to the stored electrostatic energy

Las ~ 1pH/pm. 3) @ _ € [ pi2de
M pH/p 20_2/E( )2d? ()]

We useum for our length units because modern growth pro-

cesses produce nanotubes with lengths of order micrometers 3@8 u5|tng t?ﬁ. reIatlonsh|p betvvteEhanQ n thg g;eome:[rr% OI
not (as of yet) meters. Interest, in this case a wire on top of a ground plane. The term

“electrostatic” comes from the approximation that we make in
B. Kinetic Inductance calculating the capacitance using (9), which is done using the

relationship between a static charge and a static electric field.

In order to calculate the kinetic inductance per unitlength, we, ever, the electrostatic capacitance can of course be used

follow [17] and calculate the kinetic energy per unit length angy ey considering time-varying fields, voltages, currents, and
equate that with thél /2) L1? energy of the kinetic inductance.d1arges as we will do below.

The kinetic energy per unit length in a 1-D wire is the sum of
the kinetic energies of the left-movers and right-movers. Ifthef® Quantum Capacitance
is a net current in the wire, then there are more left-movers tha

) . . nIn a classical electron gas (in a box in one, two, or three di-
right-movers, say. If the Fermi level of the left-movers is raised gas (

: ) . i I i
by eApn/2, and the Fermi-level of the right-movers is decreasé\ajedntsrlnznzl)éé?roandSVi?r? ::trzrzifr(:rror;rc]:grsts Footﬁgesrggte(gr;emczn
by the same amount, then the current in the 1-D wiré is Y Y oy Y )

. . . uantum electron gas (in a box in one, two, or three dimensions
e?/hAp. The netincrease in energy of the system is the exce%s gas ( ' ' )

number of electron$N = eAz/26) in the left versus right Ue to the Pauli exclusion principle it is not possible to add an

) : electron with energy less than the Fermi enekfyy. One must
moving states times the energy added per election/ 2. Here dd an electron at an available quantum state aliveln a

6 is the smgle pgmcle energy level spacing, which is related op system of lengtl, the spacing between quantum states is
the Fermi velocity througlé = Avg27w/L. Thus, the excess given by

kinetic energy is given byt1? /4vre?. By equating this energy

with the(1/2) LI? energy, we have the following expression for _dE 2m
the kinetic energy per unit length: 08 = Eék - thf (10)
h where L is the length of the system, and we have assumed a
Lx = 220, 4 linear dispersion curve appropriate for carbon nanotubes. By

equating this energy cost with an effective quantum capacitance
The Fermi velocity for graphene and also carbon nanotubegig], [17], [18] with energy given by

usually taken as; = 8 10°m/s, so that numerically

e2

L = 16 nH/pm. ®) e (11)

It is interesting to compare the magnitude of the kinetic indu@ne arrives at the following expression for the (quantum) capac-
tance to the magnetic inductance. From (1) and (4), we haveitance per unit length:

2
L 2vr, (h —4 Co = 2¢7 12
— =a——In <E> ~ 10 (6) = hop (12)

wherea = 1/137 is the fine structure constant. Thus, in 1-IjNhICh comes out to be numerically

sys.tems, the k|n_et|c mduct_ance.wnl always dommate. This is Co = 100 aF/um. (13)

an important point for engineering nano-electronics: In engi-

neering macroscopic circuits, long thin wires are usually coithe ratio of the electrostatic to the quantum capacitance is then
sidered to have relatively large (magnetic) inductances. In then by

case of nano-wires, the magnetic inductance is not that impor-

tant; it is the kinetic inductance that dominates. Crs = 2mh In h = lzv—Fln h ~ 1. (14)
Co e2uvp d am ¢ d
C. Electrostatic Capacitance Thus, when considering the capacitive behavior of nano-elec-
The electrostatic capacitance between a wire and a grourehic circuit elements, both the quantum capacitance and the
plane as shown in Fig. 2 is given by [25] electrostatic capacitance must be considered.
2me 2me (7) E. Wave Velocity

cosh™'(2h/d) ~ In(h/d) For a distributed inductance and capacitance per unit length,
where again the approximation is good to within 1%/as 24. @ technique used by theorists is to write down the Lagrangian
This can be approximated numerically as (kinetic minus potential energy), and then to use the Euler—La-
grange equations to derive an equation of motion which, in this
Cg =~ 50 aF/um. (8) case, ends up being a wave equation. However, a much simpler
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(if somewhat less rigorous) approach is simply to use a res(le use the subscript spinless to differentigigiess from a
known by RF engineers for many decades, namely, that the walferent g which we define below.) This immediately suggests
velocity of a circuit with distributed inductance and capacitanae technique to search for Luttinger liquid behavior in order

is given by to measureyspinless, Namely, to measure the wave velocity.
According to these calculations, the measured wave velocity

v _ 1 (15) should differ from the Fermi velocity by a large factor, of order
general LC’ unity. (If the distance to the ground plane becomes larger than

. - . e tube length such as in some free-standing carbon nanotubes
If we consider only the magnetic inductance (neglecting t . .
y 9 (neg 9 Ii}_G], another formula for the capacitance has to be used, which

kinetic inductance) and if we also consider only the electr . : : :
static capacitance (neglecting the quantum capacitance), R Ives replacing h with the length of the 1-D wire.) Finally,

the wave velocity would simply by the speed of light we note that the full solution to the wave velocity is given by

1
1 1 V1-D,interacting = {/ 75
Ufreespace — - — = C. (16) erachng Etotalctotal
LrvCEs e

1 1 1
A full solution to the collective mode of a carbon nanotube = \/m (C_ + C_>
should include both the kinetic inductance as well as the mag- KTAM) e VES
netic inductance, which we write as 1+ af=In(d/h)
=P\ T a2 a(hjd) 23)
‘Ctotal = ‘cK + E]M (17) aﬂ' c n{n
) With this, theg factor should read
as well as both the quantum capacitance and the electrostatic 12
capacitance, which we write as 14+ aZ<In(d/h)
Yspinless 3 ,UF (24)
el o= Cél +Cgl. (18) 1+ aZ*EIn(h/d)

total
To our knowledge this full function has not been discussed in
e literature. We speculate thafiness Should be redefined as
e(24) to include this term, which is equivalent to adding the
magnetic energy term to the Hamiltonian.
The definition ofg in a quantum wire when the spin degree
of freedom is taken into account will be discussed in further
1 detail below. For now, we would like to address the question
D R o (19) which naturally arises in the context of this discussion, how
to observe these collective excitations? One technique, which
However, as our estimates above show, for a 1-D quantwii propose here, is to measure the wave velocity in the fre-
system such as a nanotube, the quantum capacitance is gi®ncy or time domain. To date these collective excitations have
dicted to dominat€;.:.1, SO that in one dimension we have théyeen observed by one other experimental technique, namely,

In our recent work [12] on a two-dimensional electron g
system (in the presence of a ground plane), we found thatﬁ
kinetic inductance dominateS;.t.;, and that the geometric
capacitance dominateS;.;.;, SO that the collective mode
velocity in two dimensions is given by

approximation that that of tunneling. Using a further set of calculations [1], it can
be shown that the tunneling density of states is modified, which
V1D noninteracting & L = vp. (20) gives rise to testable predictions tq experimental tunnélig.
LkCq For the case of the-V curve of a single tunnel-contacted nan-

) . . otube, the model is that there is a 3-D-1-D tunneling interface
One method of including the effect of electron—electron interags <orts as the “ohmic contact” of one end of the tube. and a

tions in the context of the above discussion is simply to includey_3 tunneling interface at the other “ohmic contact.” Ex-

the electrostatic capacitance as well as the quantum capacita &%ments have observed [8] power-law behavior that is con-
so that the wave velocity is not quite exactly equal to the Fer Etent with the tunneling predictions, namelj/dV « vV

velocity wherea = (97! —1)/4ora = (g7 4+ g — 2)/8, depending
T 1 1 on whether the contagt is at the end or in the bulk _of the tube.
V1-D interacting™1 | Y :\/L‘ o +£ C >Svp. In the 3—D—;—D t.unnellng case, an_electrqn t_unnels into the 1-D
Ktotal K¥ES  ~K-Q system, which simultaneously excites an infinite number of 1-D

] o ) (21) . plasmons. In reference [8], experimentally observed values of
The ratio of the plasmon velocity in the presence of mteractmqary between 0.33-0.38 for end-tunneling, and 0.5-0.7 for bulk

to the plasmon velocity in the absence of interactions has a Sp@ineling, giving values af between 0.26-0.33. A recent paper
cial significance, and itis given in this simple model by [13] also measured tunneling from one 1-D quantum wire in
up Co —1/2 GaAs to another 1-D quantum wire in Gqu. Th(_are, they fpup_d
Gspinless = ————————— = <1 + —) g ~ 0.75. Both of these approaches are interesting and signifi-
U1—D,interacting cant.
_ (1 N T 1 )_1/2 (22) In this manuscript we would like to present a (_jifferen_t and
2 vp In(h/d) complementary method to measure these collective excitations
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directly, by exciting them with a microwave (GHz) voltage. In To be complete, we must include the magnetic inductance as
particular, we would like to measure the wave velocity underveell, yielding the full solution to the characteristic impedance
variety of conditions, including different distances from the nan-

otube to the ground plane, to see how the electromagnetic en- 7, .1 cpinless = 1 /ﬂ

vironment effects the properties of collective excitations in 1-D ' Ctotal
quantum systems. An additional capability of the technique de- 1 1
scribed below would be to measure the 1-D plasmon damping, — \/('CK + L) (@ + @)
including dependence on temperature and disorder. This high-
frequency measurement may also have direct applicationsinde-_ % < tofe 1 ) ( +al U_Fln(h/d)>
termining the switching speed of a variety of nanotube based  2e2 2 vp In(h/d) c
electronic devices.

T C 1 2 vp
=—y|/l4+a| -—————<+——In(h d>+0z2. 29
F. Characteristic Impedance 2e? (2 vrpIn(h/d) T ¢ (h/d) (29)

Another property of interest of the transmission line is the
characteristic impedance, defined as the ratio of the ac voltdge Intrinsic Damping Mechanisms?
to the ac current. This is especially important for measurementa, important question to consider is the damping of the 1-D
purposes. In the circuit model presented above, for aright-goiggisma waves. Currently, very little is known theoretically or
plasmon wave, the ratio of the ac voltage to the ac currentdgperimentally about the dampimgechanismsn the absence
independent of position, and is given by of such knowledge, we proceed phenomenologically in the fol-
13 lowing section. We model the damping as distributed resistance
Ze general = c (25) along the length of the tube. (This model of damping of 2-D
plasmons we recently measured was successful in describing
As we did for the wave velocity, we have to consider theur experimental results, using the dc resistance to estimate the
magnetic and kinetic inductance, as well as the electrostaaic damping coefficient.) Unfortunately, to date, even the dc re-
and guantum capacitance. Upon considering the magnetic aigiance of metallic nanotubes is not well quantified. What
electrostatic inductance only, one recovers the characteridtitown is that the scattering length at low temperatures is at least
impedance of free space 1 ym, and possibly more. This is known from recent experi-
ments where the tube length of;im gave close to the Lan-
Ze treespace = [ £ar _ \/E = 7, =377TQ. (26) Qager—.BUttike_r t.heoretical resistance for the dc measurement,
Ces € indicating ballistic (scatter free) transport over the length of the
ntire tube [27]. We state this clearly in an equation for the mean

On the other hand, if one considers only the quantum c
ee path

pacitance and only the kinetic inductance, the characteris
impedance turns out to be the resistance quantum lotp, > 1 pm. (30)

Lk h 510 2 Now, for dynamical measurements one is usually concerned
Z(‘,noninteracting,spinless = C— —=12.5 . ( 7)
Q

22 with the scattering rate, not length, so if we assume the rela-
) ) o tionship:
Now, if one considers the kinetic inductance and both com-
ponents of the capacitance (electrostatic + quantum), then one Imtp =VPT (31)

finds
then we have

| Lk Lx  Lg

Zc interacting,spinless — = —_— —_—

,int ting,spinl Crotal Cos + CQ > 1ps (32)
K

Lo T e 1 1/2 A separate recent measurement[28] of the millimeter-wave con-
= @ ( + OGEW) ductivity of mats of single-walled nanotubes gave a scattering

time of 4 ps at room temperature, but it is unclear how that re-
=gt h (28) lates to the scattering time of individual nanotubes. The condi-
spinless 9¢2 tion that must prevail for resonant geometries (see below) is that

where we have inserted the definitiongfinie.. This immedi- @ must be greater than one. This implies the condition

ately suggests a second method of measuyriaigGHz frequen- wr > 1. (33)

cies, by measuring the characteristic impedance of the transmis-

sion line. We discuss the geometries of interest in detail in a latesr a 4-ps scattering time, this means the resonant frequency of
section. For now we would like to comment that, even thouginy cavity must be greater than 40 GHz. However, we still do
the characteristic impedance measurement at high frequencieshave any data on how much greater the mean free path is
of high resistances is challenging, the predicted variation of ttiean Jum and, hence, the conditianr > 1 could be satisfied
characteristicimpedance from the noninteractifige? is large, at frequencies below 1 GHz. (In fact an ac measurement of the
of order 100%. impedance of a single nanotube could give more quantitative
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information about the mean-free-path as well as the dampisgmiconducting gate, and its effect on damping of 1-D Littinger
coefficient of 1-D plasmons.) We speculate that nanotubes withuid plasmons.
scattering times satisfyingr > 1 at frequencies below 1 GHz The important point here is that, even if there is no scattering
could be grown if they do not already exist; this would correvhatsoever in the nanotube itself, there may still be damping of
spond to a mean free path of order 1@8. We discuss the ex- the plasmon mode due to the electromagnetic coupling to the
perimental consequences of this issue in the next section in masistive ground plane.
detail. One final possible loss mechanism is radiation into free
space. This was implicitly neglected in calculating the capaci-
tance using the electrostatic method [25]. The nano-tube can
function as a nano-antenna, but since the wavelength of the
Another important damping mechanismiis if the ground plariadiation at GHz frequencies is of order cm, and the tube length
is not a perfect conductor. For a superconducting ground plaigepf orderpm, it will not be a very efficient nano-antenna, so
the approximation of a perfect conductor is a good one. Weat radiation losses are not likely to be significant.
discuss now two other cases of interest, that of a metallic film
ground plane, and that of a doped semiconducting ground plan@. CIrcuIT MODEL FORMETALLIC SINGLE-WALL CARBON
A typical deposited metal film will have a thickness of order NANOTUBE

0.1 m, which is much less than the skin depth atGHzfrequen—A carbon nanotube, because of its band structure, has two

cies. Hence, it can be treated as having a certain sheet reSiSta&%epagating channels. which we label as chanraid channel
which is typically of order 10 per square at room tempera-, ’

L . ! b [2]. In addition, the electrons can be spin up or spin down.
ture, although it might be substantially less at cryogenic terpfence, there are four channels in the Landauer—Bduttiker for-

n%talism language. In this section, we discuss an effective high-

tpartu:lpath mtxef?hroundm% t|h|s W(f)u'(:j give rise to r?_ rES'%requency circuit model which includes the contributions of all
ance per lengtik of the ground plane of order Xk um, whic four channels, and makes the spin-charge separation (the hall-

could be a significant source of damping, even if there is no scals of a Liittinger liquid) clear and intuitive
tering whatsoever within the nanotube itself. Plasma waves of’;‘ '
frequencies below/2r7 = R/2rL = 10 GHz would be se- , - Spin-Charge Separation

verely damped. If, instead of a thin film, a bulk metal is used,
then the skin depth must be considered. In that case, the resid=0" Pedagogical reasons, let us first consider noninteracting
tance per square must be replacedplfyis p , wherep is the spin 1/2 electrons _in a sin_gle—mode quantur_n wire at dc. The
bulk resistivity ands p. the skin depth, which is typically gim ~ current can be carried by either spin up or spin down electrons.
at 1 GHz in copper at room temperature. Thus, by increasih’?“a”ya when we measure the conductance of such a wire, the
the thickness of the metallic ground plane tprh, one can de- © ectrical contacts on both ends of the wire are to both the spin
crease the damping coefficient of the plasmons. However, goitB and spin down channel simultaneously, so that the effective
any thicker than the skin depth does not help. (Interestingly, tAicuit model is two quantum channels in parallel. However, if
exact same principle applies to gold plating the conductors € could inject current in one direction in the spin up channel,
coaxial cables: it is not necessary and certainly not economi@&d extract current in the spin down channel, then the net elec-
to use bulk gold at RF frequencies for the cable material.) Féical current (thehargecurrent) would be zero. However, there

a 1.um-thick metal ground plane, then, the effective resistandould be aspin current. This clearly illustrates the separation
per length that must be added to the transmission line circuit@ff SPin-charge currents in a 1-D wire at dc. Below, we con-

the 1-D wire can be of order 1a0/,m, which is small but not sider the generalization to the ac case, and we consider a case
insignificant. where there are two modes for each spin orientation, correct for

For a doped-semiconductor ground plane, a typical bulk r‘g_carbon nanotube. We will neglect the magnetic inductance in
sistivity for an n-type doped Si wafer is 1Q - cm. For this whgt fpllows. Our approaches parallels that of reference [19],
resistivity, the skin depth is of order 1 mm at 1 GHz, so thayhich in turn parallels that qf ref.erence.[2.9]. We go furtherthan
the effective resistance per square of the ground is given B\FSe references, though, in diagonalizing and calculating the
10 Qcm/Imm = 1009 per square. This would give a resis_w_npe_olz_;mce matrix, and relating this to timeasurablesffective
tance per unit length of order 10k um, which is a severe Circuitimpedance of a 1-D plasmon.
damping, much worse than any scattering in the nanotube itself. ) ] o o
In this case, any plasmons with frequency below 1 THz wouls Noninteracting Circuit Model for Metallic Single-Walll
be heavily damped. However, when the skin depth is that larde?"Pon Nanotube
corresponding to a distributed resistance in the “ground” planeThe noninteracting ac circuit model of a single-walled
that continues all the way down to 1 mm below the nanotube, tbarbon nanotube is fairly straightforward: We simply have four
above calculations for the characteristic impedance and waygantum channels in parallel each with its own kinetic induc-
velocity (which implicitly assumed that the tube length watance and quantum capacitance per unit length. (Neglecting
much larger than the distance to the ground plane) would hate electrostatic capacitance is equivalent to neglecting the
to be revised. We suspect that further numerical modeling éectron-electron interactions.) All of the above calculations
necessary to fully and quantitatively understand the interactiomould apply to that system, accept that there are four transmis-
at GHz to THz frequencies between a nanotube and a dopstoh lines in parallel. The ends of all four transmission lines

H. Damping From an External Circuit or Ground Plane
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L

Spinupa == - — FER— T — T - - coupled system, namely exciting all channels equally. It should
T T T To also be obvious from inspecting the circuit diagram that there
Spin down a “:r"““ll__’m‘f"%hﬁt“ iS no spin current in this case: as many spin up electrons move
T T T I"«z from right to left as spin down. As'we will show below, there
Spinup b “:rmﬁr’mﬁ_—"’%%&" are three other normal modes which d(_) not carry net current.
T T T ICQ Since they do not have net curre_nt flowing and they are called
o neutral modes. They do carry spin currents, though. Hence, the
Spin down b = -~ -- separation between spin and charge currents, which is one of the

Co

LU muC LU L
3 3 3 ¥

Fig. 3. Circuit model for noninteracting electrons in a single-walled carb
nanotube. Each channel (transmission line) is independent of the others.

hallmarks of a Littinger liquid.
In the Appendix, we carry out this procedure mathematically,
%Bxplicitly finding three spin modes (differential modes) and one
charge mode (common mode) from the circuit diagram shown
Spinup a __rq“ﬁ__qwﬁ__rﬁhi ______ in Fig. 4. The charge mode is the common mode excitation of
e all four transmission lines in Fig. 4 We show in the Appendix
that the charge-mode velocity is given by

1 1 4 / 4Cqo
Up—\/a<%+@>—UF 1—1-@:1)1?/9 (35)

where the last equality serves to define g for a SWNT. This re-
sultis not new [1], but the derivation based on our circuit model
is. This derivation also provides a very clear and intuitive ex-
Fig. 4. AC circuit model foiinteractingelectrons in a carbon nanotube. planation of the spin-charge separation in a 1-D wire, which we
discuss in Section IlI-D. We also show in the Appendix that the

are usually contacted simultaneously by electrical contactsQarge-mode characteristic impedance is given by
SWNTs. (Injecting spin-polarized current into only the spin up

f:hannels is an(_)the_r exciting poss_ibili_ty which we W_iII ex_plor_e Vi, Viu ALx Lx 1 h
in a future publication.) We draw in Fig. 3 the effective circuit Zc,c.m. = I e o T o5 (36)
diagram in this case. C.M. C.M. Es @ 9

Spindowna ==

Spinupb ===

Spin down b ==

:‘7;,.« v("m ;"m

We also show in the appendix that the velocity of the three spin

C. Interacting Circuit Model for Metallic Single-Wall Carbon
g g modes (which we there call the differential modes) is given by

Nanotube

At this point, we have to take into account the elec-
tron—electron interaction. Apparently this can be done in a
phenomenological way by using the electrostatic capacitanpius, the spin modes and charge modes move at different veloc-

Uspin = VF. (37)

[30]. The coulomb energy per unit length is given by ities. We discuss the experimental consequences in Section IV.
(Protal)? 1 4 ? D. AC Spin-Charge Separation: An Intuitive Explanation
Ee = 2CEs - 2CEs ;pi Based on our transmission line description of a 1-D wire,

1 ) we now give a simple description of the spin-charge separa-
= @(rm + pay + ot + p1)) (34) tion of the ac excitations in a Liittinger liquid. Tobarge mode
corresponds to ac currents which flow simultaneously through
wherep; is the charge per unit length in thilh mode. The cir- spin-up and spin-down channels in the same direction. As a con-
cuit diagram of Fig. 4 takes this charging energy into accouséquence, there is a local (dynamical) charging/discharging of
correctly, and is the central result of this paper. the nanotube, and the electrostatic capacitance to the ground
At this point, we have a coupling between the four modeplane (as well as the quantum capacitance) is involved. Together
which is immediately obvious in the circuit diagram in Fig. 4with the distributed kinetic inductance, this gives the wave ve-
Before we consider the formal mathematics, let us think abdotity of (35).
physically meaningful measurements. As in the dc case, if weln contrast the spin mode corresponds to ac spin up currents
apply an ac voltage to the nanotube, we are exciting all foflowing in one direction, and ac spin down currents flowing
channels simultaneously. (This is assuming the incoming cum-the oppositedirection, i.e., out of phase by 180Since the
rentis not spin polarized, another exciting possibility we will nagpin-up and spin-down currents are always equal in magnitude
consider in this manuscript [31].) Therefore, at one end of thmit flowing in opposite directions, there is never any net charge
nanotube (the ground end) all four channels have zero voltabaildup at any position along the nanotube. Thus, the electro-
At the other end of the nanotube (the “hot” end), all four charstatic capacitance to the nearby gate is never charged up when
nels have the same voltadg, for example. By inspection of the spin mode is excited, and is not relevant at all to the spin
the circuit diagram, the voltage along the nanotube will be tmeode. For this reason, the spin mode is also referred to as the
same for all four channels. This is actually a normal mode of tiieutral mode. Of course, the distributed quantum capacitance
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and the distributed kinetic inductance still are important, so thi L /4
the spin mode is still an effective transmission line (i.e., the e-=- -« ——— /KA E S—mr A K K ===~
excitations are wavehke_). _ _ Cold Quantum capacitance
Since the electrostatic capacitance for the spin mode do ; lectrosatc camacianee |
not matter, thavave velocitywhich is determined by the dis- 'BS cotforiatic capactianee

Unlt Iength) |S dlﬁerent than the Charge mode. The dlStrIbUt% 5. Charge mode (“Common mode") effective circuit d|agram
capacitance per unit length for the charge mode consists of both

the quantunandelectrostatic capacitance, whereas for the spin

mode it consists of only the quantum capacitance. The Smﬁloc?ty of this “effective” circuit_model is the same as the wave
velocity of the common mode [given by (35)]. The characteristic

mode velocityis the Fermi velocity, and the charge mode ve* ] k - LI ;
locity is ¢! times the Fermi velocity. !m_pe_dance of this effective circuit model |s_ 1/4 of the charac_ter-
istic impedance of the common mode [given by (36)], which
is due to the following. When we excite the common mode
IV. M EASUREMENT TECHNIQUE voltage, all four voltages$V, 1, Va.i, Vi1, Vs,|) areequal so
at the common-mode voltad&: \;. is four times larger than

In this section, we consider various methods of excitin CoE
e measured voltage by the external circuit, sifigey;. =

the common mode (charged) Littinger liquid plasmon wit . )
(charged) Luttinger liquid p o .1+ Va1 + Vo1 + V3, asgivenin (60). (The common-mode

an ac voltage. In order to describe this, let us first consid tis th th q ) The advant ¢
measurements of the dc conductance of a single walled carfgi €M IS the same as the measured curren ) The advantage o
nanotube. In the experiments performed to date, current flowa "9 the circuit diagram proposed in Fig. 5 is that we only have

; t(g#deal withonetransmission line. The disadvantage is that the

through all four channels. In the case of tubes which approa ! - . .
4¢?/h of conductance, i.e., where the macroscopic “Iea% ective boundary conditions for the geometries we consider

contacts all four channels, the current is equally distribut &Iow_are not.obwous apd require carefu! cc_)n5|derat|on.. In the
llowing sections we will use both descriptions, according to

among all four channels. This is equivalent to exciting onl ; . -
the common-mode current, and the common-mode voltage Qovenience and relevance to the particular boundary conditions
well. We would like to describe below a set of experimentlénder conS|der§t|0n_. . . .

We proceed in this section as follows. We first consider an

where we contact all four channels simultaneously wittaaen hmicallv” contacted tube. by which b ith
(microwave) voltage. This finite-frequency measurement wil mically” contacted nanofube, by which we mean tubes wi
excite only the common-mode (charged) Luttinger liquid 1- C2 electrical contacts with perfect _tra}nspa_trency which have
plasmon. (In a future publication, we will discuss the possibilit e*/h of cgnductance: Of course, this IS a Illneanzed _model of
e dc resistance, which can have a significant nonlinear cur-

of driving microwave spin polarized current to excite the spi k . . .
modes of the Littinger liquid.) Since there is a finite frequenc gnt—voltage relationship. Itis beyond the scope of this paper to
/clude nonlinear resistances in the effective circuitimpedance.

there will also be a wave vector introduced. If we measure t o . . .
ter considering “ohmically” contacted nanotubes, which are

frequency dependent impedance of the nanotube, we shoul € rivial to achieve technoloaicall id ivel
able to determine the frequency at which there are one, P! rviato achieve tecnnologically, we consider a capacitively

three, etc., standing waves in the tube and, hence, measurecﬂ{gaded nanotube which does not require dc contact. Such

dispersion curve and wave velocity of the 1-D plasmon. Frofh mea_surement ggometry ShOl."Id be much casier to achieve,
(35), this will allow a direct measurement of the parameter since in essence it only requires evaporating a metal lead

In the appendix, we derived a set of differential equations d p(tqug gzg%tlg?i’hger:;is r()e%gjnpt OL;T:ZL?(;QS:Qat'.r;gsb:;ffr'l
scribing the current and voltage for all four modes in a Litting ISCUSSI u 9 ! qui u

liquid (three neutral spin waves and one charge wave). Now, & nsideration of the boundary conditions for the 1-D plasmons,

would like to consider only the charged mode, and calculate th ich we treat below.
effective, frequency-dependent impedance that one would ex- ,
pect for a carbon nanotube at microwave frequencies. A. Ohmic Contacted Measurement
At this point, we have two options. First, we can continue We begin by considering the simplest measurement geom-
to work with the circuit diagram in Fig. 4, and apply the apetry, that of an “ohmically” contacted single wall nanotube
propriate boundary conditions for the measurement geometnigish perfect transparency at both ends. The dc conductance is
that we will consider below. This has the advantage that all fojusst 4¢2 /h, since there are two channels and two spin orienta-
channels are still present in our effective circuit model, but it ttons per channel. Tubes with dc resistance approaching this
somewhat complicated. However, for the boundary conditiomalue have recently been fabricated [27]. For ac (dynamical)
this is actually a simpler option, as we will see. impedance measurements, we really do not know where to put
Option two is to use the fact that we are considering onthe contact resistance in the ac circuit diagram. Experimen-
exciting the common mode in this paper, and to replace Figtdly, the high-frequency conductivity of nano-scale systems
with an “effective” circuit diagram consisting ofsingletrans- is an unexplored regime of mesoscopic physics; there have
mission line with rescaled inductance and capacitance per usgien few experiments [12], [32]-[35]. We speculate that the
length. This is indicated in Fig. 5, where the effective indudmpedance can be modeled as a “contact” resistance, which is
tance per unit length is now /4, and the effective capaci- discussed more rigorously in reference [11], [36]. Following
tance per unit length is given t{ﬁgé + 4651)—1. The wave reference [11], we model the contact resistance as split into
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Fig. 6. Circuit diagram for an SWNT with dc electrical contacts at both ends.

Contact Contact
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Fig. 7. Effectivecircuit diagram for an SWNT with dc electrical contacts at both ends.

a contact resistance (“charge relaxation resistance” [37]) with length on the length scale of the localization length. How-
eachside of the wire, so that each side has 1/2 of the total éwer, it is known experimentally that the localization length is
resistance. To be explicitly clear, we draw in Fig. 6 the circugreater than a few micrometers, but it is not known how long
diagram we are proposing. At dc, each of the four channels tike localization length really is. Our simplified model of a resis-
h/2e* + h/2e? = h/e? of total contact resistance. Since ther¢gance per unit length violates the expected (but never observed)
are four quantum channels in parallel, the total resistanceeigponential scaling of the resistance with length in one dimen-
given byh/4e?, the Landauer—Blttiker expected value. sion, but makes the problem tractable. According to our defi-
Now, it is possible to define an effective circuit diagram alongition of R as the resistance per length of all four channels in
the lines of Fig. 4. We show in Fig. 7 the effective circuit whiclparallel, we must insert a distributed resistanceRfidto each
is the “Norton equivalent” circuit to Fig. 6. The values for thef the channels in Fig. 6, or, equivalently, we must insert a re-
contact resistance are shown’g&? each. It is obvious from sistance per unit length &R in the effective circuit diagram
the circuit diagram that the dc resistance is equaitée?, so  Fig. 7. Our discussion of damping in Section II-G is consistent
that our model is correct in the dc limit. with this definition. We will consider various numerical values
of R below.
B. Ad Hoc, Phenomenological Damping Model

Before we continue, there is one more issue that needs totheMPedance Calculations With Ohmic Contacts

discussed. That is the issue of damping along the length of theAt this point, we are in a position to calculate the (complex,
tube. We again speculate that the dc resistance per unit lenfguency dependent) ratio of the ac voltage to the ac current
gives information about the distributed damping of the 1-D plasntering the left end of the nanotube, tinegpedance We do
mons. We model this as a distributed resistance per unit lengiis by “mapping” the problem on to well-known problems in
R. We must again be careful about the factor of four when vieansmission line theory [39]. We proceed in two steps: First,
define this parameter. In our nomenclature, we definas the we consider the impedance without the contact resistance on
dc resistance per unit length of all four channels in parallel. @e left hand side. In other words, we calculate the impedance
course, according to the scaling theory of localization [38], tHeom point 1 in Fig. 7 to ground. This is equal to the impedance
resistance of a 1-D system is expected to scale exponentiditym point 1 to point 2 in Fig. 7, which is equivalent to the input
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impedance of a (possibly lossy) transmission line with charaglegant. What is more, we recently verified experimentally the
teristic impedance. cfective, Which is “terminated” by a“load” 2-D analog of (46) in [12].
impedanceZ;, which in this case is simply the contact resis- Before we turn to a numerical evaluation of (46), let us con-
tance, i.eZ; = Reontact = h/8¢2. This is a standard result in sider qualitatively the expected frequency-dependent behavior.
microwave theory, which we repeat here for convenience At low frequencies, we should recover the dc limit of a real
o impedance oh /4¢2. This can indeed be shown to be the case,
Zin = C_Cﬂoctivcl +le (38) by taking thew — 0 limit of (46). As the frequency is in-

’ 1—Te-27 creased (assuming the damping is not too severe, see below),
there will be resonant peaks H,.,0tube @S a function of fre-
guency, corresponding to first, second, third, etc., harmonic of
the fundamental wave vector set by the finite length of the tube.

wherel is the length of the tube, andis the propagation con-
stant of the 1-D plasmon, given by

v = /(R + iwLeg ) (iwCest) (39) Applying this high-frequency voltage woultirectly excite the
1-D Lattinger liquid low-energy excitations (the 1-D plasmons).
and where we have to definéf] cgective 8S The locations of these peaks in frequency space can be used to
determine the wave velocity of this mode and, hengce,
R + iwLleg
Zeeftective = \ T iwCeg (40) . Numerical Evaluation of Impedance Versus Frequency

and where we have defined a new symBolthe reflection At this point, the best way to proceed is to evaluate (46) nu-

coefficient of the plasmon wave off of the right end of Ioa(gqerlcally for fs;)hme p055|plyltyp||cal cf:itshes,(j\(v?l%h :ezds ".“? the
impedance “terminating” the nanotube) as iscussion of the numerical value of the distributed resistance

‘R which (in addition to the contact resistance) causes damping.
This discussion must be somewhat speculative, since the 1-D
plasmon damping has never been measured, in fact the 1-D
plasmon itself has not yet been directly observed. Currently very
The effective inductance per unit length is little is known about possible mechanisms. Our model of a dis-

tributed resistance per unit length gives rise to an exponential

ZL - Zn,effective

I'= .
ZL + Zc,oﬂcctivo

(41)

Lo = Lx /4 decay in a propagating 1-D plasmon wave, with a decay length
and the effective capacitance per unit length is given by
2Zc,cffoctivc
Cof =4Co" +Cps (43) lecay = ————- (47)
as we have already indicated in Fig. 7. In the high frequen€yVe implicitly assume the limi& > R /L. in (47). The more
limit (w > Leg/R), v is just the wave vectak, i.e. general case will be discussed below.) Before we discuss es-
timates for the numerical value &, we discuss what effect
lim (7)) =k = 2 _w (44) it would have on the plasmon resonance discussed above. As
W>R /Lot A Up microwave engineers intuitively know, when the length of the
1 h 1 transmission line (in this case nanotube) is much longer that

li Z('e ective) — — :_Z(‘ .M. 45
b‘)>71€I}1£m( offective) g82  17ecM (45)

the decay lengthigecay, there is no resonant behavior to the
transmission line, and the input impedance becomes the char-
For the circuit model where we terminate the end of the trangcteristic impedance of the transmission lidge independent
mission line with a contact impedance equal to half the total @$ the “load” impedance. Physically, this is because the wave
resistance, we assume that each of the four transmission ligeg propagates toward the load gets essentially completely at-
has a resistance at each end equal t2e*. Therefore, by the tenuated before it reaches the load. On the other hand, if the
definition of the common mode transmission line parametetgansmission line is shorter than the decay lerigth.,, then
we need to use a load impedanceZyf = h/8¢” in (41) in  the impedance becomes resonant as in the case we discussed
order to implement the model discussed in the first paragraghove, with some damping, hence, finige
of this section. In the absence of either theory or data, we conjecture that the

In the second step of the calculation, we note that the totﬁcay length scale for 1-D Luttinger liquid plasmons must be
impedance is just the contact resistance of the left-hand sigigeast as long as the mean free path determined from dc trans-
of the nanotube plus the input impedance of (38). If we takgyrt measurements. Since the mean free path is known to be at
the contact resistance on each side to be half of the total |dgst 1,m long, the resistance per length is less than@hkn
resistance (i.e.Reontact = h/8e”), then we have the desired[ysing (47)]. Another technique to estimate an upper limifon
result is to use data from recent STM experiments [40] which mea-
1+ Te—2 sure the voltage drop along the length of the tubestamicon-
—- (46) ductingtubes. There, the resistance per unit length is found to be
1 —Te—2 . .

9 kQ/um. (Presumably, metallic tubes have an even lower resis-

This is a clear prediction that can be experimentally measuréance per unit length.) In this (presumably worst case) scenario,
While it may seem like a complicated result, it is actually quitthe damping lengthy..., would be equal to roughly a3m. We

Znanotube = Se2 + Zc,effective
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Fig. 8. Predicted nanotube dynamical impedance for ohmic contact, for two '
different values of g. We assunie= 100 m. 1xkQ
IMHz 100MHz 10GHz 1THz
consider below two important cases in turn: first, where the tube Frequency

length is less thafyec.y, hence, resonatd@p > 1, and second
in the “overdamped” limit where the tube length is greater thdr@- 9. Predicted nanotube dynamical impedance in overdamped case.
ldecay, hENCE, resonatdp < 1.

For the case of tube lengths less than the decay length, e macroscopic lead will have a finite capacitance to ground,
discuss nanotubes of length 106. Recent progress on CVDjust by virtue of the fact that the lead is finite in size. This ca-
growth [26] has made such long SWNTSs possible. With suchpacitance to ground in many conceivable geometries will pro-
long length, the resonance frequencies will be in the gigahexigle a low-impedance path to ground in parallel with the high-
(GHz) range, where experiments are feasible. In the THz frigapedance nanotube, which will effectively short the nanotube
quency range, it should also be possible to measure frequeriéyground. This second difficulty makes the “ohmically” con-
dependent properties [15], [16], which would be relevant féfcted geometry very difficult to realize experimentally. How-
tubes with lengths in them range. The technical challengesVver, with sufficient effort it should be feasible.
in the THz range are not straightforward, though, and generallyAn interesting prediction of our model is the frequency at
more difficult than in the GHz range. Since we have had excéthich the first resonance occurs. The real part of the impedance
lent experimental success with measuring 2-D plasmons [12]Agaks at a quarter wavelength. (It is a general result from mi-
the GHz range, that is where we focus our attention. Howeverowave and RF engineering that the quarter wavelength struc-
our predictions should also apply to THz resonance frequerigiyes transform open circuits to short circuits and vice versa.
experiments. This fact is used in many modern RF circuits.) The resonance

We chose (optimistically) a resistance per unit length of ffeequency can be written as
Q/um, which is much less than the experimental upper limit of
10 kQ/um. In the case that the total resistance distributed along
the length of the nanotube (i.R.x () is less than the contact re-
sistance, the resistance of the contacts is the dominant damg&@
mechanism. This is the case for the parameters we have cho
We plot in Fig. 8 the predicted nanotube dynamical impedan
for two different values of). The predicted value qf is 0.25,
and we also plot the predicted value &, .otupe for g = 0.5,
which we achieve by numerically adjustidgzs in our model.
It is clear from Fig. 8 that it is still possible to ha¥g factors e
greater than 1, even when the contact resistance is much larg
than the distributed “channel” resistance. Thus, the contact re- Zo offective
sistance causes damping but does not necessarily €aitske Q= m (49)
less than 1. Hence, it is still possible to observe the features of o
the Lattinger liquid even in the presence of the contact resishereR; .. is the total resistance of the nanotube.
tance. We now consider the opposite case, that of an “overdamped”

In principle, it should be possible to build a measurement ap-D plasmon. We consider again a tube of length 169 and
paratus that could measure this prediction. There are two mamw we consider resistance per unit length ofd/km. In this
technical challenges. First, the impedance is high, which is difase, there will be no resonant frequency behavior. We plot in
ficult for microwave experiments to resolve. This issue coulig. 9 the predicted real impedance [using (46)] for these pa-
be solved by measuring many nanotubes of the same lengthameters, assuming= 0.25. There are two qualitative features
parallel, although one would need to assume that each tube Haat we would like to discuss. First, at dc the real impedance is
the same g factor, damping, etc. The second challenge is thiatply the resistance per length times the length,Ré. As the

vp 1
resonance — 1 - 48
/ = (@)

%his frequency, the imaginary part of the impedance crosses
&fo. Therefore, if a measurement scheme can be devoiced to
Hieasure the where the imaginary part of the ohmically con-
tacted nanotube impedance changes sign, this wouldibec
measurement of the Luttinger liquid parameter g, sibcand

vr would be known. An additional interesting parameter is the
L#ation of th&) of the resonance. This can be estimated as
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BT T ) One solution is simply to turn the problem upside down. We
3 10 J\-/\/\J ) 3 envisage laying a carbon nanotube onimsulating substrate,

3 s 13 and then evaporating a metallic, macroscopic lead onto the top
a AW & of one end of the nanotube, and another macroscopic, metallic
0= - lead onto the top of the other end of the nanotube. One lead
sk 4 is connected to ground, and the other lead is connected to an
¢ ¢ ac voltage source. The impedance from one lead to the other is
g or ; measured. This corresponds to measuring the impedance from
Cl 4 = one lead to the nanotube plus the impedance from the nanotube

to the other lead. By the symmetry in the problem, we only need

el i L I to consider one of)t/hose ?/mpedazces anFZi multiply by tW)(/). The

0 51015202530 0 51015202530 effective circuit diagram we consider is shown in Fig. 11. The

Frequency (GHz) Frequency (GHz)

physical geometry is indicated schematically in Fig. 12. This
Fig. 10. Predicted nanotube dynamical impedance for ohmic contact on dr@Pacitive coupling scheme is exactly the scheme we used for
end only for two different values of g. capacitive coupling to 2-D plasmons; see [12, Fig. 2].

Now, let us consider the impedance from one lead to the nan-
frequency is increased, the impedance falls. The frequency sastigbe. It should be obvious by now that the capacitive contact
at which the impedance starts to change is given by the invetsmnot be treated as a lumped capacitance. Rather, the capac-
of the total capacitanc€(s!) times the total resistance. At veryitance between the lead and the nanotube is distributed along
high frequencies, the impedance becomes equal to the effective length of the tube. We must also keep in mind that there
characteristic impedance given in (40). The frequency at whi@ha distributed kinetic inductance along the length of the tube.
this occurs is given by the inverse of the effective “L/R” timeThis may seem like a difficult problem, but in fact we have al-
constant, which is the resistance per unit length divided by theady developed the mathematical machinery necessary to fully
inductance per unit length. We note that in this high frequenegplve this problem. The impedance from the macroscopic lead
limit, the effective characteristic impedancg.(«) given by to the nanotube is equal to the impedance from the nanotube to
(40) is mostly real. Therefore, even in the overdamped cage lead. Above, we calculated the impedance from a nanotube
where there is no resonant behavior, the transmission-line be“ground.” In the case we are considering here we can use
havior of the nanotube becomes important at frequencies belgw results of those calculations, only now instead of the nan-
1 GHz. otube coupled to a ground plane, it is coupled to a lead. Thus,

. the impedance of the capacitive coupling to the nanotube is ex-

E. Ohmic Contacted Resonance Measurement on One E“dactly equal to the impedance calculated in (38), vithequal

Another possible measurement setup would consist tofinfinity. Therefore, the impedance from one lead to another is
making electrical contact on one end only of the nanotubequal to twice the impedance of (38). We calculate this numer-
and letting the other end “float.” This would correspond tically and plot the result in Fig. 13, for a tube length of 1080
cutting the wire to ground on the right-hand side of Fig. 7. Atnder each lead, and a very short length of nanotube between the
dc, no current would flow so the impedance would be infinitéeads. We use a resistance per length of@Q@m. The resonant
However, at ac current could flow in and out of the end of thieehavior is again clear. This technique may be conceptually the
tube (charging and discharging the capacitors), so it is stifiost difficult to understand, but is in practice the simplest to
meaningful to consider the dynamical impedance. In this cas@plement experimentally.
we can still use (46) to predict this dynamical impedance, with
a “load” impedance in equation (41) of infinity (correspondings. Quantum Electric Field Effects
to an open circuit at the other end of the nanotube.) We plot inIn the above calculations the electromagnetic field is consid-
Fig. 10 the predicted dynamical impedance in this case, where

e e again assumed a e f 100, bt where we se © 0 S2550% Hovevcr atow (e even oom [41) teper
a resistance per unit length of 100um. Resonant behavior P ging 9y q

is still predicted, but now the first peak in the real impedan tized sincee”/2C' can be much less thain 1. Additionally,
P ' P P %ﬁe electromagnetic field must be considered quantum mechan-
occurs at half a wavelength.

ically (as photons) if the photon energy is greater than the

F. Capacitively Contacted Measurement charging energy. This occurs as a typical energy of 0.5 K for
a 10-GHz photon. Therefore, if the discreteness of the photon
fi21d is taken into account, a more sophisticated quantum treat-

with low re_sistance at dc is not a trivial challenge. Ever_1 i Faent of the nanotube dynamical impedance, which takes into
can be achieved, the “contact’ resistance at ac may be d'ﬁerSEEount processes such as photon assisted tunneling, will be

than itis at dc for unknown phys_|cs reasons. An alternative a\‘?écessary. Such a treatment is beyond the scope of this paper.
proach would be to use capacitive contacts to the nanotube. In

the context of the above discussion, it should be clear that there . .

is already capacitive coupling between the ground plane a'ﬁ'd RF Nano-Spintronics

the nanotube, so how can one achieve capacitive coupling to &inally, we mention here briefly that a similar set of calcu-
macroscopic lead? lations can be performed [42] to predict the dynamisgin
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small gap /-1

/4 == =L C /4 == L =
Q I Quanlum Capaclla“cc I QCE“V Quamum Capaclla“cc I

ES —I— Electrostatic capacitance | = ;E Electrostatic capacitance I

£K/4 ACK/4

Fig. 11. Circuit diagram for capacitively coupled nanotube.

insulating barrier
(e.g. oxide)
insulating substrate between metal

and nanotube

Fig. 12. Geometry for capacitive contact. The spacing between the metal electrodes has been enlarged for clarity. No dc electrical contactuioetiie nano
implied in this picture, only capacitive coupling to the leads.

the foundation for our current research aimed at active nanotube
transistorswith switching speeds approaching the THz range.

Real (kQ)
Real (kQ)
PN
S S

3
(=]

APPENDIX
We now proceed mathematically to solve for the normal

g g 20 modes. The charge per unit length of tile mode is related to
It 0 the voltages of the four other modes, which (upon inspection of
£ E-20 the circuit diagram in Fig. 4 we write as a matrix generalization
-40 of @ = CV
=), Lo
0 5 1015202530 0 5 10 1520 25 30 V”T(x’t)
Frequency (GHz) Frequency (GHz) al (1177 )
VbT (‘Tv t)
Fig. 13. Predicted nanotube dynamical impedance for capacitive contact on Vbl (:c7 t)
one end for two different values of g. c1 + c=1 c=1 ol ol
A S
) ) _ Ces CQ +Ces Ces Ces
impedanceof a SWNT. This could open up a new area of re-— ol czl ctyczl ezl
. . . . ES ES Q ES ES
search into RF spin-polarized transport in 1-D systems for ap- —1 —1 ~1 -1 -1
S o : N Crs Crs Crs Co +Cgs
plications in “nano-spintronics.
Pat (.177 t)
Pal| (.T, t)
V. CONCLUSIONS pur(z,t) (50)
We have considered the dynamical properties of poi(2,1)

single-walled carbon nanotubes from a circuit point offhis is equivalent to [19, eq. (24)].) We write this in vector
view. The 1-D plasmon should be observable using the sam&ation as

experimental technique we developed for measurements of the .
2-D plasmons. This measurement would be direct confirmation V(z,t) = C™ ' j(x,t). (51)
of Littinger liquid behavior of a 1-D system of interacting . . I
quantum particles. We have formulated our experimental teé%gjg't?oﬁgm;’sme fﬁg rfr?rillt?;z theengg;i\gt'g;, o:‘(itrr:;;?flzg\:zﬁge;
nigue and predictions in the frequency domain, but it shou gluat ' 9 9 ' 9
. : . . law gives
also be possible to perform a time domain experiment usmab
similar principles to measure the wave velocity and damping. 3‘7(35_ t) 3f(x. t)

Finally, the RF circuit models we have presented here provide “or KT g

o . (52)
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(This can be seen by considering the voltage just to the left afithis is equivalent to [19, eq. (27)], which, in turn, is equivalent
just to the right of any of the inductors drawn in Fig. 4). Ino [29, eq. (11)].)The eigenvectors are
the derivation of the telegrapher equations, Kirchoff’'s current

law is usually used. It is easier in this case to use the continuity C.M. D1 D2 D3
equation, which in one dimension is given by Vo= /1N, /1N, /71N, /1\. (59
1 1 -1 -1
. - 1 -1 1 -1
op(x,t) OI(x,t) 1 1 1 1

=- : (53)

ot ox

) o We have labeled the eigenvect@ra\l. for “common mode” and
We now proceed to take the second time derivative of (51)1_p3 for differentials 1—3. The “common-mode” vector is

yielding the fundamental charged excitation in a Luttinger liquid. Below,
we discuss a method to excite these modes with a microwave
9 0 - 9 LOp(x,t) L0 af(x t) voltage. The other three are neutral, that is, they carry no net
o5 V(1) =5C" —=-C"= 7 (char Si he other th d iti -
ot ot ot ot ot o ge) current. (Since the other three are degenerate, it is pos
L0 (‘)f(x 0) sible to chose a different basis for the other three. A basis of

= - Er—n nonorthogonal degenerate eigenvectors was used in [19], but
> we chose the orthogonal eigenvectors as in [43], [44], and [30].)
-1 0 1 9V(x,t)

=_-C R e Ry (54) However, the differential modes do caagincurrent. These are

Oz Ly, Oz the neutral and charged modes of a Littinger liquid. This is the
clear separation of spin and charge degrees of freedom which is
In sum, the hallmark of a Luttinger liquid.
- 1 e In the new basis, the capacitance matrix is diagonal. If we
OV (w,t) _ C V(1) (55) write the voltages in the new basis as
ot? L 022
Using the same methods it can be shown that Vo(z,1)
Ve (z,t)
= _ = VDl(.’I} t)
2I(=, Lo (a, = ’
0lla,t) _ O 91t (56) Vial(a, )
ot ;CK Ox VD3($,t)
Var(z, t) + Vo (z,t) + Vo (z,8) + Vi (2, ¢
Thus, we have a set of four coupled wave equations for the Vaigx t; + Vaiga:-f; _ VZlElf; _ V’;iEx f;
voltage and current on each line. =lv T(a:,t) v l(x/t) n Vm(x/t) Vi () (60)
. . . e — a ) a ’ ’
Finally, there exists a matrix relatiny (=, ¢) and I (x,t), Vot (z,t) = Vo (2,t) = Vi (z,t) + Vo) (3, 1)

the impedance matrix. This is discussed in [19] in this basis.

We do not consider the impedance matrix in this basis here, as . . R - ]
it is not relevant to the experimental setup we discuss below,3Rd Similarly forp’o(z, ) and I o(z, t), then the new capaci-
contrast to [19], we will discuss the impedance in a differeff@NCe matrix is simply given by

basis, where it is diagonal.

Let us consider the voltage wave equation (55§4f = 0, Ve (z,t) Cq'+4Cgs 0 0 0
then C is diagonal, and the voltage wave (plasmon) in each{ Vp(z,t) | 0 Cél 0 0
mode is independent of the others, all moving at the Fermive{ Vpy(z,t) | — 0 0 Cél 0
locity. If Cgs is nonzero, this is tantamount to saying there are\ Vp;(z,t) 0 0 0 -t
interactions, and the four modes are coupled. We need now to Q
: - : : : pe.(z,1)
diagonalize the equations of motion to find the normal modes. poi(z, 1)
If we want to consider solutions of the form = DL (61)
pp2(@, t)
/)D3(17 t)

V(:}:,t) = Vpellke—wt) (57)
or, in vector notation,

then we must find which values (VB will work solve the cou-
pled wave equations (55) apd (56)._ In other Word_s, we need.to 7'(% t) = C"lﬁ"(a:,t). (62)
find a set of vectors which diagonalizes the capacitance matrix.

Specifically, we must solve (on plugging the above (57) intothe ) ] )
voltage wave equation (55)) Additionally, in the new basis the following holds:

/ /
wio  CT'o Vv (z,t) T (z,t)
= Vo= Vo. 58 oy Wt _ _p 2t Y
]C2 0 LIC 0 ( ) or ‘CK ot

(63)
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and comparing (72) to (70). Thus, for the common mode, the char-
, — acteristic impedance is given by
op (z,t) 01T (1)

= - . 64
ot o 64) Vi Vi 4Lx  Lx 1 h
ZeeMm. = =T = +=—=—55. (713)
: : : : : I\ Ic Cps Cq g2e
In this new basis, the wave equation for the voltage is now di-

agonal, with new wave equations given by

This is a very important number which will be used in the ex-
perimental techniques section to be discussed below. Our result

PVeum(z,t) _ 1 (i LA ) O*Vonr (z,t) (65) differs from [19, eq. (37)] because we are considering the ex-
ot2 - Lx \Cqo Cgs Ox? citation of only the common mode, i.e., Lttinger liquid charge
O*Vpy (z,t) 1 9*Vpy(x,t) mode. Reference [19] considered the excitation of mige
o2 = CoLx 922 (66) i.e., a superposition of charge and spin modes. Below we dis-

cuss how our method excites only the charge mode, and not the
with the equation foD2 and D3 the same as for D1. In vector.s'pin mode, so.that our ca_lculation Is more germangto our exper-
form |_me_ntal technlque described below to directly excite Luttinger
liquid collective modes.
o i1 a7 Now, it is important to realize that what one measures is
0 V (21'/” _C oV (;’t) (67) not exactly Z. for the common mode. The common mode
ot Lx Oz impedance is the sum of the voltagés ( + V. | + Vi1 + V4 |)
Similarly, one can show that divided by the sum of the current&,(; + I, + It + Ip,|)-
The sum of the currents is what flows into an external circuit.
However, when coupled to an external circuit all of the voltages
are equal to the eternally measured voltage, so that the common
mode voltage is actually four times larger than the voltage
measured at the end of the tube by an external circuit. That is
Now, the wave velocity for the differential modes is just thavhy our (73) differs from [18, eq. (3)].
Fermi velocity (using (66) above). However, the velocity for the Finally, for the sake of completeness, it can be shown that
common mode, i.e., 1-D plasmon, is given by the following is the characteristic impedance of the other three
modes:

1 (1 4 [0, Vor  [Lx  h
===+ = 1+ ——= ) Zepl= — =] 0= —. 74
Up \/ﬁ}( <CQ + CE5> vF + CEgs UF/.(] D1 Ip1 CQ 2¢e2 ( )

This equation (which is not a new result [1]) definggor an Th_is descri_bes the ratio of the voltage to the current when the
SWNT. Now, let us consider solutions to the voltage and currefRin Wave is excited.
wave equations in the diagonal basis, in order to determine the
characteristic impedance. Since the wave equations are diagonal ACKNOWLEDGMENT
(i.e., uncoupled), if we can excite the common mode, none of theThe author thanks J. P. Eisenstein and C. Dekker for useful
other modes will be excited. discussions.

The general solutions are of the form

/ /
T (x,t)  C 7 02T (1)
o2 L 022

(68)
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Correspondence

Corrections to “An RF Circuit Model for Carbon
Nanotubes”

Corrections to “Luttinger Liquid Theory as a Model of the
Gigahertz Electrical Properties of Carbon Nanotubes”

P. J. Burke P. J. Burke

1

In the above paper [1, eq. (14)], g should be replaced by ¢~ .
Thus, (14) should read

Zc,interacting = C =
total

The last sentence in Section III should read: In [11], we show that
the circuit model of Fig. 1 is still valid as an effective circuit model for
the charged mode if £ is replaced by £ /4 and C¢, is replaced by
4Cq.

In the above paper [1, p. 136], the equation appearing in the last line
in the left-hand-side column should have read (Crg + (4Co)™")~".
- z In the above paper [1], (43) should have read as follows:
K Ko
+ Co g

—1

h
« 2¢2° — — —
b 2 Coi = (4C0)™" + Cid.
In the above paper [1], Figs. 5, 7, and 11 should have appeared as shown
below in Figs. 1-3.
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