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An RF Circuit Model for Carbon Nanotubes

P. J. Burke

Abstract—\We develop an RF circuit model for single walled s
carbon nanotubes for both dc and capacitively contacted geome- -——— 4111 -———-
tries. By modeling the nanotube as a nanotransmission line with Lx Co L Quantum capacitance
distributed kinetic and magnetic inductance as well as distributed 3 I Electrostatic canacitance I
quantum and electrostatic capacitance, we calculate the complex, R

frequency dependent impedance for a variety of measurement ge- i TTTT

ometries. Exciting voltage waves on the nanotransmission line is _ N .

equivalent to directly exciting the yet-to-be observed one dimen- g'%: 1'd Cireit ?'agrﬁm for 1-D system of spinless electrons. Symbols are
sional plasmons, the low energy excitation of a Littinger liquid. efined per unit length.

Index Terms—Circuit model, impedence, Littinger liquid, nan- ) ) ]
otube, RF. Lagrangian of a one-dimensional electron gas (1-DEG), an ex-

pression for the quantum capacitance (which was not important
in our 2-D experiments) as well as the kinetic inductance of a
SWNT is derived. In reference [8], [9] the tunnel conductance at
UR GOAL IN this paper is to describe an RF circuit modehigh voltages is related to electrical parameters (the character-
for the effective electrical (dc to GHz to THz) propertiesstic impedance) of the transmission line in a multiwalled nan-
of carbon nanotubes. While we restrict our attention to metallatube. In both of these discussions, the distributed inductance
single walled nanotubes (SWNTSs), the general approach caramgl capacitance per unit length form a transmission line, which
used to describe semiconducting carbon nanotubes, multiwalie@n electrical engineer’s description of a 1-D plasmon.
carbon nanotubes, quantum wires in GaAs heterostructures [1]in what follows we present an RF circuit model based on
and any other system of one-dimensional (1-D) interacting eldbe transmission line properties of a carbon nanotube. We use
trons [2]. An additional goal of this paper is to describe a teckhis model to calculate the nanotube dynamical impedance
nigue that can be used to directly excite 1-D plasmons in carb@eal and imaginary) as a function of frequency, as well as the
nanotubes using a microwave signal generator. This techniqaedamping and wave velocity. We discuss possible practical
was recently applied to measure collective oscillations (plasensequences [10] of the results in nanotube electronic and
mons) in a two-dimensional electron gas, including measumicromechanical/nanomechanical high-frequency circuits. A
ments of the 2-D plasmon velocity, as well as the temperaturere detailed discussion of the RF circuit model can be found
and disorder dependent damping [3]. The high frequency circinitour recent manuscript [11]. A description from a theoretical
model developed herein may have direct applications in detphysics point of view (complementary to the circuit description
mining the switching speed of a variety of nanotube based eleliscussed here) can be found in [12], and references therein.
tronic devices.
In our recent 2-D plasmon work, we suggested a trans-
mission-line effective circuit model to relate our electrical [l. NANO-TRANSMISSIONLINE

Impedance measurements to the properties of the 2-D pI"’V‘:'mmf‘he dc circuit model for a one-channel quantum wire of non-
collective excitation [3]-[6]. There, we measured the kinetic . ) o

. . : l?teractmg electrons is well known from the Landauer—Biittiker
inductance of a two-dimensional electron gas, as well as |

SR o
distributed electrostatic capacitance to a metallic “gate” aormallsm of conduction in quantum systems. The dc conduc-
directly exciting it with a microwave voltage. The distribute

nce is simply given by?/h. If the spin degree of freedom is
; : T ._-accounted for, there are two “channels” in a quantum wire: spin
capacitance and inductance form a transmission line, which'is . . : .
. . e up and spin down, both in parallel. We postpone our discussion
an electrical engineer’s view of a 2-D plasmon. . : .
. ST o f spin until the next section, and assume for the moment the
Since then, the transmission-line description has been dis- . N .
: : ) ectrons are spinless. At ac, the circuit model is not well es-
cussed in the context of both single-walled [7] and multiwalled ,” . . . .
ablished experimentally. In this manuscript we discuss a trans-

[8], [9] carbon nanotubes. In reference [7], by considering thrre%ission line equivalent circuit model that we use to predict the

dynamical impedance of a SWNT under a variety of measure-
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This is calculated using the standard technique of setting the
capacitive energy equal to the stored electrostatic energy

20=7 / E(z)*d*x (5)

and using the relationship betwegérand( in the geometry of
interest, in this case a wire on top of a ground plane.

Fig. 2. Geometry of nanotube in presence of a ground plane. )
C. Quantum Capacitance

A. Kinetic Inductance In a classical electron gas (in a box in 1-D, 2-D, or 3-D), to
add an extra electron costs no energy. (One can add the electron

In order to calculate the kinetic mductqncg per unit I('}m-:’tQIith any arbitrary energy to the system.) In a quantum electron
we follow reference [7] and calculate the kinetic energy perurBtElS (in a box in 1-D, 2-D, or 3-D), due to the Pauli exclusion

. 9 L
length and equate that with tg2L1* energy of the k|net|c. principle it is not possible to add an electron with energy less

inductance. The kinetic energy per unit length in a 1-D wir an the Fermi energlf . One must add an electron at an avail-

is the sum of the kinetic energies of the left movers and rig ble quantum state abov& . In a 1-D system of lengti, the
movers. If there is a net current in the wire, then there are m Sacing between quantum .states is given by: '

left movers than right movers, say. If the Fermi level of the le

movers is raised byA.u/2, and the Fermi-level of the right S§E — d_E(;k _ thZ—W (6)
movers is decreased by the same amount, then the current in dk L

the 1-D wire isI = e/hAy. The net increase in energy of thewhere L is the length of the system, and we have assumed a
system is the excess number of electraNst eAyu/26) inthe linear dispersion curve appropriate for carbon nanotubes. By
left vs. right moving states times the energy added per electrefuating this energy cost with an effective quantum capacitance
eApu/2. Hered is the single particle energy level spacing, which?], [8] with energy given by

is related to the Fermi velocity through= hvp2r /L. Thus the o2

excess kinetic energy is given ty?/4vre?. By equating this —— =0F (7)
. o ) Co
energy with thel /2L1# energy, we have the following expres-
sion for the kinetic energy per unit length: one arrives at the following expression for the (quantum) capac-
itance per unit length [7], [8]:
h
Lr=—5—. 1 2¢?
K= 9e2yp @) Co = il (8)
hUF

The Fermi velocity for graphene and also carbon nanotubesyjich comes out to be numerically
usually taken asy = 8 10° m/s, so that numerically
Co = 100aF /um. 9)
Lk =16 nH/um. (2)
) ~ D. Wave Velocity

In reference [11], we show that in 1-D systems, the kinetic h locity of ission I ith ind
inductance will always dominate the magnetic inductance. This € wave \_/elocnymo acgany) trgnsmlssmn ine IW't induc-
is an important point for engineering nanoelectronics: In endNce Per unit lengtit and capacitance per unit lengthis

neering macroscopic circuits, long thin wires are usually Cog:_mply 1/VLC. In the case under consideration here, the in-
sidered to have relatively large (magnetic) inductances. This

dctance is simply the kinetic inductance; the total capacitance
not the case in nanowires, where the kinetic inductance dofE" unit length is given by
nates. Coota1 = C5' +Cis - (10)

total

If we were to neglect the screened coulomb interaction, it would

B. Electrostatic Capacitance : ] ) :
i . . be equivalent to neglecting the electrostatic capacitance. In that
The electrostatic capacitance between a wire and a groynd. \ve have

plane as shown in Fig. 2 is given by [13]

1
Unoninteracting ~ {| 75 — UF. 11
Cp = ,217“ ~ 2me 3) teracting ”ﬁKCQ F (11)
cosh ' (2n/d) ~ In(h/d)

One method of including the effect of electron—electron interac-
where the approximation is good to within 1% for> 2 — D. tions in the context of the above discussion is simply to include
(If the distance to the ground plane becomes larger than the tuhe electrostatic capacitance as well as the quantum capacitance,
length such as in some free-standing carbon nanotubes [14], smihat the wave velocity is not quite exactly equal to the Fermi
other formula for the capacitance has to be used, which involvuasiocity
replacingh with the length of the 1-D wire.) This can be approx-

. , [ 1 1 1
imated numerically as Vinteracting ~ i = \/LACES + Zrlo > vp.
tota C ¢

Cg =~ 50aF/um. (4) (12)
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The ratio of the wave (plasmon) velocity in the absence of in-
teractions to the wave (plasmon) velocity in the presence of in-
teractions has a special significance in the theory of Littinger
liquids, and is denoted by the lettey.”
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E. Characteristic Impedance

Another property of interest of the nanotransmission line
is the characteristic impedance, defined as the ratio of the
ac voltage to the ac current. This is especially important for .
measurement purposes. The characteristic impedance of a
(any) transmission line with inductance per unit lengtland
capacitance per unit lengéhis simply \/£/C. 0 51011520 2530 0 51011520 25 30

If one considers only the quantum capacitance and only the Frequency (GHz) Frequency (GHz)
kinetic inductance, the characteristic 'mpEdance turns out tolQ& 3. Predicted nanotube dynamical impedance for ohmic contact, for two

Imag. ( xQ)

Imag. (xQ)

the resistance quantum different values of;. We assumé = 100 ym, andR = 10 Q/pm.
Lx h IMQ I — I
anoninteracting = @ = @ = 12.5 k. (13) ®=1/Ry.Cal :
If one both considers both components of the capacitance (elec- | ‘ |
trostatic4+ quantum), then one finds o 100kQ e R (O SRS S
L:) H H h H H
< H
| Lx [Lx Lk h 3 i
Zr interacting — - = - - — 955 14 g Z
5 1nt ting Ciotal Crgs + CQ 9262 ( ) g Zc,cﬂ’uc;}
e S
where we have inserted the definition of 10k 1=
F. Damping Mechanisms? §|(o=R:/L i
; s : i off
An important question to consider is the damping of the 1-D o i i i i i
plasma waves. Currently very little is known theoretically or “MHz 100MHz  10GHz 1THz

experimentally about the dampimgechanismdn the absence

of such knowledge, we model the damping as distributed resis-

tance along the length of the tube, with resistance per unitleng{f 4. predicted nanotube dynamical impedance in overdamped case. We

R. This model of damping of 2-D plasmons we recently meassumé = 100 pm, R = 1 kQ/um, andg = 0.25.

sured [3] was successful in describing our experimental results,

using the dc resistance to estimate the ac damping coefficiertne charged (voltage) wave. In reference [11], we show that the

circuit model of Fig. 1 is still valid as an effective circuit model

[ll. SPIN-CHARGE SEPARATION for the charged mode if the kinetic inductance and quantum ca-

A carbon nanotube, because of its band structure, has ta%cnance (buhot the electrostatic capacitance) are simply di-

propagating channels [15]. In addition, the electrons can be s¥| ed byfour.
up or spin down. Hence, there are four channels in the Lan-
dauer—Buttiker formalism language. In this section we discuss
an effective high-frequency circuit model which includes the Using the above described circuit description, we numerically
contributions of all four channels, and makes the spin-chargealculate the complex, frequency dependent impedance of an
separation (the hallmark of a Luttinger liquid) clear and intwelectrically contacted metallic single nanotube (including the
itive. effects of spin) for two cases: high damping and low damping,
The noninteracting ac circuit model (i.e., one neglecting the., high and low resistance per unit length. In the low damping
electrostatic capacitance) of a single-walled carbon nanotubdinsit, shown in Fig. 3, the predicted impedance has resonant
fairly straightforward: One simply has four quantum channefsequency behavior, corresponding to standing waves along the
in parallel each with its own kinetic inductance and quantufength of the tube.
capacitance per unit length. All of the above calculations would In the high-damping limit, shown in Fig. 4, the resonances
apply to that system, accept that there are four transmission lises washed out and one sees two limits. First, at dc the real
in parallel. impedance is simply the resistance per length times the length,
When one includes the effect of electrostatic capacitance, fte, RI, plus the Landauer—Bittiker contact resistance. The fre-
four individual propagating modes all share the same capagitency scale at which the impedance starts to change is given by
tance to the ground plane, and hence become coupled. The etjuainverse of the total capacitanck.(.;/) times the total resis-
tions of motion for the four coupled transmission lines can lance. At very high frequencies, the impedance becomes equal
diagonalized, and the eigenmodes become three spin wavestaritle characteristic impedance given in equation (14) (corrected

Frequency

IV. NUMERICAL PREDICTIONS
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Correspondence

Corrections to “An RF Circuit Model for Carbon
Nanotubes”

Corrections to “Luttinger Liquid Theory as a Model of the
Gigahertz Electrical Properties of Carbon Nanotubes”

P. J. Burke P. J. Burke

1

In the above paper [1, eq. (14)], g should be replaced by ¢~ .
Thus, (14) should read

Zc,interacting = C =
total

The last sentence in Section III should read: In [11], we show that
the circuit model of Fig. 1 is still valid as an effective circuit model for
the charged mode if £ is replaced by £ /4 and C¢, is replaced by
4Cq.

In the above paper [1, p. 136], the equation appearing in the last line
in the left-hand-side column should have read (Crg + (4Co)™")~".
- z In the above paper [1], (43) should have read as follows:
K Ko
+ Co g

—1

h
« 2¢2° — — —
b 2 Coi = (4C0)™" + Cid.
In the above paper [1], Figs. 5, 7, and 11 should have appeared as shown
below in Figs. 1-3.
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Fig. 1. Charge mode (“common mode”) effective circuit diagram.
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Fig. 2. Effective circuit diagram for an SWNT with dc electrical contacts at both ends.
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Fig. 3. Circuit diagram for capacitively coupled nanotube.
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