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An RF Circuit Model for Carbon Nanotubes
P. J. Burke

Abstract—We develop an RF circuit model for single walled
carbon nanotubes for both dc and capacitively contacted geome-
tries. By modeling the nanotube as a nanotransmission line with
distributed kinetic and magnetic inductance as well as distributed
quantum and electrostatic capacitance, we calculate the complex,
frequency dependent impedance for a variety of measurement ge-
ometries. Exciting voltage waves on the nanotransmission line is
equivalent to directly exciting the yet-to-be observed one dimen-
sional plasmons, the low energy excitation of a Lüttinger liquid.

Index Terms—Circuit model, impedence, Lüttinger liquid, nan-
otube, RF.

I. INTRODUCTION

OUR GOAL IN this paper is to describe an RF circuit model
for the effective electrical (dc to GHz to THz) properties

of carbon nanotubes. While we restrict our attention to metallic
single walled nanotubes (SWNTs), the general approach can be
used to describe semiconducting carbon nanotubes, multiwalled
carbon nanotubes, quantum wires in GaAs heterostructures [1],
and any other system of one-dimensional (1-D) interacting elec-
trons [2]. An additional goal of this paper is to describe a tech-
nique that can be used to directly excite 1-D plasmons in carbon
nanotubes using a microwave signal generator. This technique
was recently applied to measure collective oscillations (plas-
mons) in a two-dimensional electron gas, including measure-
ments of the 2-D plasmon velocity, as well as the temperature
and disorder dependent damping [3]. The high frequency circuit
model developed herein may have direct applications in deter-
mining the switching speed of a variety of nanotube based elec-
tronic devices.

In our recent 2-D plasmon work, we suggested a trans-
mission-line effective circuit model to relate our electrical
impedance measurements to the properties of the 2-D plasmon
collective excitation [3]–[6]. There, we measured the kinetic
inductance of a two-dimensional electron gas, as well as its
distributed electrostatic capacitance to a metallic “gate” by
directly exciting it with a microwave voltage. The distributed
capacitance and inductance form a transmission line, which is
an electrical engineer’s view of a 2-D plasmon.

Since then, the transmission-line description has been dis-
cussed in the context of both single-walled [7] and multiwalled
[8], [9] carbon nanotubes. In reference [7], by considering the
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Fig. 1. Circuit diagram for 1-D system of spinless electrons. Symbols are
defined per unit length.

Lagrangian of a one-dimensional electron gas (1-DEG), an ex-
pression for the quantum capacitance (which was not important
in our 2-D experiments) as well as the kinetic inductance of a
SWNT is derived. In reference [8], [9] the tunnel conductance at
high voltages is related to electrical parameters (the character-
istic impedance) of the transmission line in a multiwalled nan-
otube. In both of these discussions, the distributed inductance
and capacitance per unit length form a transmission line, which
is an electrical engineer’s description of a 1-D plasmon.

In what follows we present an RF circuit model based on
the transmission line properties of a carbon nanotube. We use
this model to calculate the nanotube dynamical impedance
(real and imaginary) as a function of frequency, as well as the
ac damping and wave velocity. We discuss possible practical
consequences [10] of the results in nanotube electronic and
micromechanical/nanomechanical high-frequency circuits. A
more detailed discussion of the RF circuit model can be found
in our recent manuscript [11]. A description from a theoretical
physics point of view (complementary to the circuit description
discussed here) can be found in [12], and references therein.

II. NANO-TRANSMISSIONLINE

The dc circuit model for a one-channel quantum wire of non-
interacting electrons is well known from the Landauer–Büttiker
formalism of conduction in quantum systems. The dc conduc-
tance is simply given by . If the spin degree of freedom is
accounted for, there are two “channels” in a quantum wire: spin
up and spin down, both in parallel. We postpone our discussion
of spin until the next section, and assume for the moment the
electrons are spinless. At ac, the circuit model is not well es-
tablished experimentally. In this manuscript we discuss a trans-
mission line equivalent circuit model that we use to predict the
dynamical impedance of a SWNT under a variety of measure-
ment geometries.

The effective circuit diagram we are proposing is shown in
Fig. 1. Below, we will discuss each of the four contributions to
the total circuit, and then discuss some of its general properties,
such as the wave velocity and characteristic impedance. For the
sake of simplicity, as shown in Fig. 2, we will restrict ourselves
to the case of a wire over a “ground plane.”
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Fig. 2. Geometry of nanotube in presence of a ground plane.

A. Kinetic Inductance

In order to calculate the kinetic inductance per unit length,
we follow reference [7] and calculate the kinetic energy per unit
length and equate that with the energy of the kinetic
inductance. The kinetic energy per unit length in a 1-D wire
is the sum of the kinetic energies of the left movers and right
movers. If there is a net current in the wire, then there are more
left movers than right movers, say. If the Fermi level of the left
movers is raised by , and the Fermi-level of the right
movers is decreased by the same amount, then the current in
the 1-D wire is . The net increase in energy of the
system is the excess number of electrons ( ) in the
left vs. right moving states times the energy added per electron

. Here is the single particle energy level spacing, which
is related to the Fermi velocity through . Thus the
excess kinetic energy is given by . By equating this
energy with the energy, we have the following expres-
sion for the kinetic energy per unit length:

(1)

The Fermi velocity for graphene and also carbon nanotubes is
usually taken as 10 m/s, so that numerically

nH m (2)

In reference [11], we show that in 1-D systems, the kinetic
inductance will always dominate the magnetic inductance. This
is an important point for engineering nanoelectronics: In engi-
neering macroscopic circuits, long thin wires are usually con-
sidered to have relatively large (magnetic) inductances. This is
not the case in nanowires, where the kinetic inductance domi-
nates.

B. Electrostatic Capacitance

The electrostatic capacitance between a wire and a ground
plane as shown in Fig. 2 is given by [13]

(3)

where the approximation is good to within 1% for .
(If the distance to the ground plane becomes larger than the tube
length such as in some free-standing carbon nanotubes [14], an-
other formula for the capacitance has to be used, which involves
replacing with the length of the 1-D wire.) This can be approx-
imated numerically as

m (4)

This is calculated using the standard technique of setting the
capacitive energy equal to the stored electrostatic energy

(5)

and using the relationship betweenand in the geometry of
interest, in this case a wire on top of a ground plane.

C. Quantum Capacitance

In a classical electron gas (in a box in 1-D, 2-D, or 3-D), to
add an extra electron costs no energy. (One can add the electron
with any arbitrary energy to the system.) In a quantum electron
gas (in a box in 1-D, 2-D, or 3-D), due to the Pauli exclusion
principle it is not possible to add an electron with energy less
than the Fermi energy . One must add an electron at an avail-
able quantum state above . In a 1-D system of length , the
spacing between quantum states is given by:

(6)

where is the length of the system, and we have assumed a
linear dispersion curve appropriate for carbon nanotubes. By
equating this energy cost with an effective quantum capacitance
[7], [8] with energy given by

(7)

one arrives at the following expression for the (quantum) capac-
itance per unit length [7], [8]:

(8)

which comes out to be numerically

m (9)

D. Wave Velocity

The wave velocity of a (any) transmission line with induc-
tance per unit length and capacitance per unit lengthis
simply . In the case under consideration here, the in-
ductance is simply the kinetic inductance; the total capacitance
per unit length is given by

(10)

If we were to neglect the screened coulomb interaction, it would
be equivalent to neglecting the electrostatic capacitance. In that
case we have

(11)

One method of including the effect of electron–electron interac-
tions in the context of the above discussion is simply to include
the electrostatic capacitance as well as the quantum capacitance,
so that the wave velocity is not quite exactly equal to the Fermi
velocity

(12)
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The ratio of the wave (plasmon) velocity in the absence of in-
teractions to the wave (plasmon) velocity in the presence of in-
teractions has a special significance in the theory of Lüttinger
liquids, and is denoted by the letter “.”

E. Characteristic Impedance

Another property of interest of the nanotransmission line
is the characteristic impedance, defined as the ratio of the
ac voltage to the ac current. This is especially important for
measurement purposes. The characteristic impedance of a
(any) transmission line with inductance per unit lengthand
capacitance per unit lengthis simply .

If one considers only the quantum capacitance and only the
kinetic inductance, the characteristic impedance turns out to be
the resistance quantum

k (13)

If one both considers both components of the capacitance (elec-
trostatic quantum), then one finds

(14)

where we have inserted the definition of.

F. Damping Mechanisms?

An important question to consider is the damping of the 1-D
plasma waves. Currently very little is known theoretically or
experimentally about the dampingmechanisms. In the absence
of such knowledge, we model the damping as distributed resis-
tance along the length of the tube, with resistance per unit length

. This model of damping of 2-D plasmons we recently mea-
sured [3] was successful in describing our experimental results,
using the dc resistance to estimate the ac damping coefficient.

III. SPIN–CHARGE SEPARATION

A carbon nanotube, because of its band structure, has two
propagating channels [15]. In addition, the electrons can be spin
up or spin down. Hence, there are four channels in the Lan-
dauer–Büttiker formalism language. In this section we discuss
an effective high-frequency circuit model which includes the
contributions of all four channels, and makes the spin-charge
separation (the hallmark of a Lüttinger liquid) clear and intu-
itive.

The noninteracting ac circuit model (i.e., one neglecting the
electrostatic capacitance) of a single-walled carbon nanotube is
fairly straightforward: One simply has four quantum channels
in parallel each with its own kinetic inductance and quantum
capacitance per unit length. All of the above calculations would
apply to that system, accept that there are four transmission lines
in parallel.

When one includes the effect of electrostatic capacitance, the
four individual propagating modes all share the same capaci-
tance to the ground plane, and hence become coupled. The equa-
tions of motion for the four coupled transmission lines can be
diagonalized, and the eigenmodes become three spin waves and

Fig. 3. Predicted nanotube dynamical impedance for ohmic contact, for two
different values ofg. We assumel = 100 �m, andR = 10 
=�m.

Fig. 4. Predicted nanotube dynamical impedance in overdamped case. We
assumel = 100 �m,R = 1 k
=�m, andg = 0:25.

one charged (voltage) wave. In reference [11], we show that the
circuit model of Fig. 1 is still valid as an effective circuit model
for the charged mode if the kinetic inductance and quantum ca-
pacitance (butnot the electrostatic capacitance) are simply di-
vided byfour.

IV. NUMERICAL PREDICTIONS

Using the above described circuit description, we numerically
calculate the complex, frequency dependent impedance of an
electrically contacted metallic single nanotube (including the
effects of spin) for two cases: high damping and low damping,
i.e., high and low resistance per unit length. In the low damping
limit, shown in Fig. 3, the predicted impedance has resonant
frequency behavior, corresponding to standing waves along the
length of the tube.

In the high-damping limit, shown in Fig. 4, the resonances
are washed out and one sees two limits. First, at dc the real
impedance is simply the resistance per length times the length,
i.e., , plus the Landauer–Büttiker contact resistance. The fre-
quency scale at which the impedance starts to change is given by
the inverse of the total capacitance ( ) times the total resis-
tance. At very high frequencies, the impedance becomes equal
to the characteristic impedance given in equation (14) (corrected
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for the spin-charge effects discussed in Section III). The fre-
quency at which this occurs is given by the inverse of the effec-
tive “ ” time constant, which is the resistance per unit length
divided by the inductance per unit length.

V. CONCLUSION

We have derived an effective RF circuit model for a single
walled carbon nanotube, including the effects of kinetic induc-
tance as well as the electrostatic and quantum capacitance. The
nanotransmission line model we developed is a circuit descrip-
tion of a 1-D plasmon, and as such is directly related to the long
postulated Lüttinger liquid properties of 1-D systems. Our next
step will be to experimentally test the validity of this circuit
model in either the frequency or time domain, and to develop
an RF circuit model foractivenanotube devices, such as gated
semiconducting nanotube FETs with source and drain [16].
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Corrections to “An RF Circuit Model for Carbon
Nanotubes”

P. J. Burke

In the above paper [1, eq. (14)], g should be replaced by g�1.
Thus, (14) should read

Zc;interacting =
LK

Ctotal
=

LK

CES
+
LK

CQ
= g�1 h

2e2
:

The last sentence in Section III should read: In [11], we show that
the circuit model of Fig. 1 is still valid as an effective circuit model for
the charged mode if LK is replaced by LK=4 and CQ is replaced by
4CQ.
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Corrections to “Luttinger Liquid Theory as a Model of the
Gigahertz Electrical Properties of Carbon Nanotubes”

P. J. Burke

In the above paper [1, p. 136], the equation appearing in the last line
in the left-hand-side column should have read (C�1

ES + (4CQ)
�1)�1.

In the above paper [1], (43) should have read as follows:

C
�1
e� = (4CQ)

�1 + C
�1
ES :

In the above paper [1], Figs. 5, 7, and 11 should have appeared as shown
below in Figs. 1–3.
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Fig. 1. Charge mode (“common mode”) effective circuit diagram.

Fig. 2. Effective circuit diagram for an SWNT with dc electrical contacts at both ends.

Fig. 3. Circuit diagram for capacitively coupled nanotube.
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