Sensing of DNA by graphene-on-silicon FET structures at DC and 101 GHz

E.R. Brown a,1, W.-D. Zhang a,* , L. Viveros a , D. Neff b , N.S. Green b , M.L. Norton b , P.H.Q. Pham c , P.J. Burke c

a,1 Depts. of Physics and Electrical Engineering, Wright State University, Dayton, OH 45435, USA
b Department of Chemistry, Marshall University, Huntington, WV 25755, USA
c Department of Electrical and Computer Engineering, UC, Irvine, CA 92697, USA

ABSTRACT

A graphene–silicon field-effect transistor (GFET) structure is demonstrated as a detector of single-stranded 13-mer DNA simultaneously at DC and 101 GHz at three different molarities: 0.01, 1.0 and 100 nM. The mechanism for detection at DC is the DNA-induced change in lateral sheet conductance, whereas at 101 GHz it is the change in RF sheet conductance and the resulting effect on the perpendicular beam transmission through the GFET acting as an optical etalon. For example, after application and drying of the DNA on a GFET film biased to a DC sheet conductance of 2.22 mS, the 1.0 nM solution is found to reduce this by 1.24 mS with a post-detection signal-to-noise ratio of 43 dB, and to increase the transmitted 101-GHz signal from 0.828 to 0.907 mV (arbitrary units) with a post-detection signal-to-noise ratio of 36 dB. The increase in transmittance is consistent with a drop of the 101-GHz sheet conductance, but not as much drop as the DC value. Excellent sensitivity is also achieved with the 0.01-nM solution, yielding a DC SNR of 41 dB and a 101-GHz SNR of 23 dB.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Graphene continues to attract attention for its application to biosensing, particularly the detection of trace concentrations of macromolecules such as nucleic acids and proteins [1]. This is justified largely by the strong covalent sp2-bonding behavior that graphene displays [2]. However, like so many other biosensors, graphene-based detectors present significant challenges in selectivity not only between macromolecular types but between different forms of the same type, such as different base sequences of DNA or RNA [3]. This is because the sp2-bonding is sensitive to the primary molecular structure, but not so much to the secondary or tertiary structure [4]. One possible method of discriminating macromolecules based on higher-order structure is through their π−π stacking [5] and high-frequency dielectric behavior [6,7]. Theoretical and experimental studies have long shown the presence of unique dielectric dispersion and low-lying vibrational resonance in macromolecules, especially the nucleic acids [8]. The research presented here is relevant to the longstanding proposal that biosensor selectivity between macromolecules may ultimately be attained by virtue of these unique signatures, especially at millimeter-wave and THz frequencies [9–11].

In a recent publication we demonstrated the utility of a graphene-oxide–silicon resonator structure in determining the THz complex conductance of graphene [12]. A cross-sectional view of the structure is shown in Fig. 1(a), and the fabrication method entails transfer of a low-pressure chemical vapor deposition (LPCVD)-prepared, monolayer graphene film oxide-pre-coated, high-resistivity silicon substrate [13]. Then source (S) and drain (D) contacts are deposited directly on the graphene, and a gate (G) contact on the opposite side of the silicon to create a graphene-channel field-effect transistor (GFET). Although having relatively low transconductance by Si-MOS standards, this GFET is quite useful for studying the transport physics of graphene, especially in comparing the high-frequency (THz) behavior to the low-frequency (DC) behavior. For example, from interference effects displayed in the transmission of normally incident radiation, it was found that the real parts of the dc and THz sheet conductances are quite comparable, consistent with the Drude model [14]. Here, we utilize the same GFET but for biomolecular sensing via the exposed topside graphene film with the electrodes used for tuning and calibration of the sheet conductance. The same type of graphene film has already been demonstrated for chemical detection but on a PDMS substrate rather than the Si used here [15]. The effect of the biomolecules on the high frequency sheet conductance...
Fig. 1. (a) GFET structure, and (b) transmission-line model for calculation of transmittance.

Fig. 2. Transmittance and its sensitivity factor as a function of graphene sheet conductance.
is estimated via the transmittance T of radiation propagating perpendicular to the graphene, as shown in Fig. 1(a). Assuming quasi-plane-wave radiation, we can model T with the transmission line model in Fig. 1(b) in which graphene is simply a shunt, lumped impedance Z_C. The length of the transmission line L is equal to the thickness of the high-resistivity silicon substrate, and its characteristic impedance Z_0 is equal to $\eta_0/n = 110 \Omega$, where $n = c^2/2\hbar = 3.415$ and $\eta_0 = 11.66$: the relative dielectric constant of the Si in the 100–1000 GHz range [16]. Circuit analysis then predicts T as the ratio between the power delivered to the free space load (lumped element η_0) and the available power from the source on the incident side.

Fig. 2(a) shows the predicted T as a function of frequency and parameterized by sheet impedance assuming the imaginary part is negligible so that $Z_C \approx 1/G_C$. Our previous results showed that this approximation is quite valid at ~ 100 GHz but becomes less accurate with increasing frequency [12]. The range of parametrized sheet conductance G_C is 0.5–19.2 mS, corresponding to $\nu = e^2/2\hbar = 3.415$ and $\nu = 11.66$: the relative dielectric constant of the Si in the 100–1000 GHz range [16]. Circuit analysis then predicts T as the ratio between the power delivered to the free space load (lumped element η_0) and the available power from the source on the incident side.

Fig. 2(b) guided our design of the experimental sensor apparatus shown schematically in Fig. 3. It consists of a waveguide-mounted Gunn-oscillator operating at a fixed frequency of 101 GHz just 11 GHz below the fundamental resonance of the graphene–silicon etalon. It is square-wave amplitude modulated with a power-MOSFET circuit, radiated horizontally through a pyramidal horn antenna that feeds an off-axis paraboloid which directs and focuses the beam downward. The focused beam is mode-matched to a second feedhorn that collects the radiation into a Schottky-rectifier receiver. The GFET structure is then located in the beam path just above the receive feedhorn where the spot size is approximately 5 mm. The output signal from the Schottky rectifier is fed to a $1000 \times$ gain low-noise voltage amplifier, and then demodulated with a lock-in amplifier synchronized to the square wave. A waveguide attenuator between the Gunn oscillator and the feedhorn allows the received signal to be increased to the maximum possible output signal-to-noise ratio (SNR) before the onset of compression and other nonlinearity. Typically, this background SNR was ~ 60 dB.

3. Results and discussions

The GFET structure was operated with the backgate bias of $V_{CS} = +25$ V from a low-noise power supply, and a drain-source constant-voltage bias of $V_{DS} = +0.1$ V from a Keithley 2400 source meter. This backgate bias was chosen because of its proximity to the Dirac-point bias of ~ 30 V, which was attainable but only with a large degree of fluctuation in the drain-source current. The 25 V backgate bias creates a significant background electron sheet concentration in the graphene, and the V_{DS} is just high enough to allow accurate measurement of the sheet conductance without excessive drift and 1/f noise. Because the graphene geometry between the S and D electrodes is approximately square (area ~ 1 cm2), the absolute DC sheet conductance is $G_{DC} \approx I_{DS}/V_{DS}$. For the specific GFET tested we measured an I_{DS} of 0.2132 mA, or sheet conductance of 2.132 mS. The corresponding background 101-GHz transmittance signal was $T_s = 0.8527$ V where the last digit is significant given the high SNR.

To validate the measurement technique and assess its accuracy, we used the backgate to induce a known-change in graphene DC
sheet conductance and compare this with the derived change of the 101-GHz quantity. We applied backgate voltages of $V_{BL} = 30 \text{ V}$ and $V_{L0} = 20 \text{ V}$ to straddle the nominal +25 V and allow for mean-value estimation. The DC current values at the two gated voltages were 0.2017 and 0.2255 mA, respectively, corresponding to $\Delta I_{DC} = I_1/I_0 = -0.238 \text{ mS}$. The lock-in signals for the same backgate voltages were $X_{RI} = 0.8661$ and $X_{L0} = 0.8412$ corresponding to a transmittance difference of $T_{RI} - T_{L0} \approx (X_{RI} - X_{L0})/X_R = 0.0292$. Division by $dT/\partial G_C \approx 0.11 \text{ mS}^{-1}$ then yields $\Delta G_R \approx -0.265 \text{ mS}$ in good agreement with ΔI_{DC}.

The biodetection protocol was to apply 13-mer single-stranded DNA solutions of three different molarities (0.01, 1.0, and 100 nM) sequential at 900-s intervals, starting with the 0.01 nM solution. A drop of each was placed directly on the graphene with a syringe, allowed to settle for 300 s, and then blown dry with an oil-free air gun. The Keithley-2400 DC current was recorded simultaneous with the THz transmitted signal via the output from the lock-in amplifier. The experimental results for DC current are shown in Fig. 4(a) where we see an initial value of 222 μA between 600 and 900 s, corresponding to a sheet conductance of 2.22 mS. Then a large fall in DC current occurs with the application of all three drops, and a lesser fall upon blow drying 300 s later. Both effects are most pronounced with the 0.01 nM solution and become progressively weaker with the other two. The 1.0 and 100 nM drops have a significant effect in their aqueous form but become progressively weaker with the other two. The 1.0 and 100 nM drops have a significant effect in their aqueous form but a little further change occurs upon drying. In all cases, however, at constant bias voltage the DNA decreases the DC sheet conductance of the graphene.

Similarly, the transmitted THz signal plotted in Fig. 4(b) shows a large and precipitous decrease upon application of each drop of DNA solution. But unlike the DC current, the THz signal recovers to its previous level and goes slightly higher upon drying. The decrease and recovery can be explained by the strong absorption coefficient of $\sim 100 \text{ cm}^{-1}$ for liquid water at 101-GHz. Although each drop is $\sim 1 \text{ mm}$ thick, they don't fill the entire beam footprint in Fig. 3 so the net attenuation caused by the liquid water is only $\sim 3 \text{ dB}$. From Fig. 2, the increased post-dry transmission level compared to initial level suggests that the 101-GHz sheet conductance, like the DC conductance, is decreasing with each drop.

To quantify and compare the effects of the DNA on the DC and 101-GHz signals, we define and calculate relative sheet-conductance changes, ΔG_{DC} and ΔG_R. The former is defined according to Fig. 4(a) as $\Delta G_{DC} = (I_N - I_0)/I_0 \text{ V}$, where the I_N ($N = 1, 2, 3$) are the plateau (time-averaged) current levels after thorough drying of the 0.01, 1.0, and 100 nM drops, respectively. The latter is defined by $\Delta G_R = [(X_N - X_0)/X_0]/\partial T/\partial G_C$ where the X_N ($N = 1, 2, 3$) are the corresponding plateau transmittance signals, and again $dT/\partial G_C \approx -0.11 \text{ mS}^{-1}$. A plot of these quantities vs molarity is displayed in Fig. 5 showing a monotonic increase in absolute value but a relatively small change in slope vs molarity, especially for the ΔG_{DC} which changes less than 40% over the entire range. Interestingly, the ΔG_R is always smaller in magnitude, especially for 0.01 nM where it is approximately 5-times lower. The reason for this is not yet understood.

Finally, we can obtain a metric for the sensitivity of both methods by calculation of the post-detection signal-to-noise ratio (SNR). For the DC method the SNR is just $\Delta I_{DC}/I_{rms} = |I_N - I_0|/I_{rms}$ where I_{rms} is the rms fluctuation dominated by a fast (white noise) component from the current source (Keithley 2400), and a slow (drift) component from the graphene. The noise was observed over a 600 s time span with the graphene kept dry, and yielded $I_{rms} \approx 8.5 \times 10^{-7} \text{ A}$. Thus, for the 1.0 nM case with $\Delta I_{DC} \approx 0.124 \text{ mA}$, we get an SNR of 145 [43.2 dB power SNR]. And for the 0.01 nM case with $\Delta I_{DC} \approx 0.010 \text{ mA}$, the DC-SNR is 117 [41 dB]. The DC SNR

\[\text{Fig. 4. The effects of DNA on DC and 101-GHz signals.} \]
is the lock-in output noise which was attributable primarily to white-noise from the Schottky rectifier and the low noise amplifier (LNA). Observed over the same 600 s time window, and for the given modulation frequency (1 kHz) and integration time (0.3 ms), we measured $X_{\text{ms}} = 1.22$ mV. Thus for the 1.0 nM case where $|X_1 - X_0| = 0.079$ mV, the SNR = 64.6 [36.2 dB power SNR]. And for the 0.01 nM case where $|X_1 - X_0| = 0.017$ mV, the SNR = 14.0 [23 dB]. The 101-GHz SNR drops 13 dB for the two-order lower molarity, more than the DC drop, but still nonlinear. Interestingly, the ~7 dB lower SNR for the 101-GHz signal is very close to the degree of sub-optimal performance according to Fig. 2(b). If the operating frequency was 112 instead of 101 GHz, and the DC sheet conductance was 1.0 mS instead of the 2.1 mS, the result reported here. In principle, this lower sheet conductance precludes an extrapolation in that direction. For the 101-GHz method the SNR is $\Delta X_{\text{sg}}/X_{\text{ms}} = |X_1 - X_0|/X_{\text{ms}}$ where X_{ms} is the lock-in output noise which was attributable primarily to white-noise from the Schottky rectifier and the low noise amplifier (LNA). Observed over the same 600 s time window, and for the given modulation frequency (1 kHz) and integration time (0.3 ms), we measured $X_{\text{ms}} = 1.22$ mV. Thus for the 1.0 nM case where $|X_1 - X_0| = 0.079$ mV, the SNR = 64.6 [36.2 dB power SNR]. And for the 0.01 nM case where $|X_1 - X_0| = 0.017$ mV, the SNR = 14.0 [23 dB]. The 101-GHz SNR drops 13 dB for the two-order lower molarity, more than the DC drop, but still nonlinear. Interestingly, the ~7 dB lower SNR for the 101-GHz signal is very close to the degree of sub-optimal performance according to Fig. 2(b). If the operating frequency was 112 instead of 101 GHz, and the DC sheet conductance was 1.0 mS instead of the 2.1 mS displayed by the present device, then the sensitivity factor would be ~2× higher and the post-detection SNR ~6 dB higher than the result reported here. In principle, this lower sheet conductance could be obtained by increasing the backgate voltage, but even 50 V only reduced it to about 1.5 mS and the drain-source current was noticeably unstable at this point. Alternately, one should get ~3 dB improvement in SNR by starting with a thicker Si substrate (435 µm) for which the first non-zero resonance in Fig. 2(a) would occur at 101 instead of 112 GHz.

4. Conclusion

In conclusion, we have presented the first known detection of DNA by single-layer graphene simultaneously at DC and a millimeter-wave frequency, specifically 101 GHz. Although the DC detection is more sensitive in terms of SNR in the tested GFET structure, there is room for improvement in the mm-wave performance through optimization of the experimental parameters. The mm-wave detection opens up the exciting possibility of enhancing the selectivity of the GFET towards nucleic acids and many other possible analytes by further characterization of the frequency-dependence and possible vibrational resonances that nucleic acids are known to display at radio frequencies above ~10 GHz. This material is based upon work supported by, or in part by, the U.S. Army Research Laboratory and the U.S. Army Research Office under contract number W911NF-11-1-0024.

Conflict of interest

The authors declare that they have no conflict of interest.

References