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Abstract—We develop an rf circuit model for single walled car-
bon nanotubes for both dc and capacitively contacted geometries.
By modeling the nanotube as a nano-transmission line with dis-
tributed kinetic and magnetic inductance as well as distributed
quantum and electrostatic capacitance, we calculate the complex,
frequency dependent impedance for a variety of measurement ge-
ometries. Exciting voltage waves on the nano-transmission line is
equivalent to directly exciting the yet-to-be observed one dimen-
sional plasmons, the low energy excitation of a Luttinger liquid.

I. INTRODUCTION

Our goal in this paper is to describe an rf circuit model for
the effective electrical (dc to GHz to THz) properties of car-
bon nanotubes. While we restrict our attention to metallic sin-
gle walled nanotubes, the general approach can be used to de-
scribe semiconducting carbon nanotubes, multi-walled carbon
nanotubes, quantum wires in GaAs heterostructures[1], and any
other system of one-dimensional interacting electrons[2]. An
additional goal of this paper is to describe a technique that can
be used to directly excite 1d plasmons in carbon nanotubes
using a microwave signal generator. This technique was re-
cently applied to measure collective oscillations (plasmons) in
a two-dimensional electron gas, including measurements of the
2d plasmon velocity, as well as the temperature and disorder
dependent damping[3]. The high frequency circuit model de-
veloped herein may have direct applications in determining the
switching speed of a variety of nanotube based electronic de-
vices.

In our recent 2d plasmon work, we suggested a transmission-
line effective circuit model to relate our electrical impedance
measurements to the properties of the 2d plasmon collective
excitation[3], [4], [5], [6]. There, we measured the kinetic in-
ductance of a two-dimensional electron gas, as well as its dis-
tributed distributed electrostatic capacitance to a metallic “gate”
by directly exciting it with a microwave voltage. The dis-
tributed capacitance and inductance form a transmission line,
which is an electrical engineer’s view of a 2d plasmon.

Since then, the transmission-line description has been dis-
cussed in the context of both single-walled[7] and multi-
walled[8], [9] carbon nanotubes. In reference [7], by consider-
ing the Lagrangian of a one-dimensional electron gas (1DEG),
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Fig. 1. Circuit diagram for 1d system of spinless electrons. Symbols are
defined per unit length.

Fig. 2. Geometry of nanotube in presence of a ground plane.

an expression for the quantum capacitance (which was not im-
portant in our 2d experiments) as well as the kinetic inductance
of a SWNT is derived. In reference [8], [9] the tunnel con-
ductance at high voltages is related to electrical parameters (the
characteristic impedance) of the transmission line in a multi-
walled nanotube. In both of these discussions, the distributed
inductance and capacitance per unit length form a transmission
line, which is an electrical engineer’s description of a 1d plas-
mon.

In what follows we present an rf circuit model based on
the transmission line properties of a carbon nanotube. We
use this model to calculate the nanotube dynamical impedance
(real and imaginary) as a function of frequency, as well as the
ac damping and wave velocity. We discuss possible practi-
cal consequences[10] of the results in nanotube electronic and
micro/nano-mechanical high-frequency circuits. A more de-
tailed discussion of the rf circuit model can be found in our
recent manuscript[11]. A description from a theoretical physics
point of view (complementary to the circuit description dis-
cussed here) can be found in reference [12], and references
therein.
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II. NANO-TRANSMISSION LINE

The dc circuit model for a one-channel quantum wire of non-
interacting electrons is well known from the Landauer-Buttiker
formalism of conduction in quantum systems. The dc conduc-
tance is simply given by ����. If the spin degree of freedom
is accounted for, there are two “channels” in a quantum wire:
spin up and spin down, both in parallel. We postpone our dis-
cussion of spin until the next section, and assume for the mo-
ment the electrons are spinless. At ac, the circuit model is not
well established experimentally. In this manuscript we propose
and discuss a transmission line equivalent circuit model that can
be used to predict the dynamical impedance of a single walled
nanotube under a variety of measurement geometries.

The effective circuit diagram we are proposing is shown in
figure 1. Below, we will discuss each of the four contributions
to the total circuit, and then discuss some of its general prop-
erties, such as the wave velocity and characteristic impedance.
For the sake of simplicity, as shown in figure 2, we will restrict
ourselves to the case of a wire over a “ground plane”.

A. Kinetic Inductance

In order to calculate the kinetic inductance per unit length,
we follow reference [7] and calculate the kinetic energy per
unit length and equate that with the �

�
��� energy of the ki-

netic inductance. The kinetic energy per unit length in a 1d
wire is the sum of the kinetic energies of the left-movers and
right-movers. If there is a net current in the wire, then there are
more left-movers than right-movers, say. If the Fermi level of
the left-movers is raised by �����, and the Fermi-level of the
right-movers is decreased by the same amount, then the current
in the 1d wire is � � ������. The net increase in energy of
the system is the excess number of electrons (� � �����Æ) in
the left vs. right moving states times the energy added per elec-
tron �����. Here Æ is the single particle energy level spacing,
which is related to the Fermi velocity through Æ � ���� �	��.
Thus the excess kinetic energy is given by �� ����� �

�. By
equating this energy with the �

�
��� energy, we have the fol-

lowing expression for the kinetic energy per unit length:

�� �
�

�����
(1)

The Fermi velocity for graphene and also carbon nanotubes is
usually taken as �� � � ��� 
��, so that numerically

�� � �	 ���
� (2)

In reference [11], we show that in 1d systems, the kinetic in-
ductance will always dominate the magnetic inductance. This
is an important point for engineering nano-electronics: In engi-
neering macroscopic circuits, long thin wires are usually con-
sidered to have relatively large (magnetic) inductances. This is
not the case in nano-wires, where the kinetic inductance domi-
nates.

B. Electrostatic capacitance

The electrostatic capacitance between a wire and a ground
plane as shown in figure 2 is given by[13]

�� �
�	�

������
�
����

� � �	�

��
����
� (3)

where the approximation is good to within 1 % for � � ��. (If
the distance to the ground plane becomes larger than the tube
length such as in some free-standing carbon nanotubes[14], an-
other formula for the capacitance has to be used, which involves
replacing h with the length of the 1d wire.) This can be approx-
imated numerically as

�� � �� ����
� (4)

This is calculated using the standard technique of setting the
capacitive energy equal to the stored electrostatic energy:

��

��
�

�

�

�
�
��� ���� (5)

and using the relationship between � and � in the geometry of
interest, in this case a wire on top of a ground plane.

C. Quantum capacitance

In a classical electron gas (in a box in 1,2, or 3 dimensions),
to add an extra electron costs no energy. (One can add the elec-
tron with any arbitrary energy to the system.) In a quantum
electron gas (in a box in 1,2, or 3 dimensions), due to the Pauli
exclusion principle it is not possible to add an electron with
energy less than the Fermi energy �� . One must add an elec-
tron at an available quantum state above �� . In a 1d system of
length L, the spacing between quantum states is given by:

Æ� �
��

��
Æ� � ����

�	

�
� (6)

where L is the length of the system, and we have assumed a
linear dispersion curve appropriate for carbon nanotubes. By
equating this energy cost with an effective quantum capaci-
tance[7], [8] with energy given by

��

��
� Æ�� (7)

one arrives at the following expression for the (quantum) ca-
pacitance per unit length:

�� �
���

���
� (8)

which comes out to be numerically

�� � ��� ����
� (9)
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D. Wave velocity

The wave velocity of a (any) transmission line with induc-
tance per unit length � and capacitance per unit length � is
simply ��

�
�� . In the case under consideration here, the in-

ductance is simply the kinetic inductance; the total capacitance
per unit length is given by

�������� � ����  ����	� (10)

If we were to neglect the screened coulomb interaction, it would
be equivalent to neglecting the electrostatic capacitance. In that
case we have

�
�
��
������
� �
�

�

���� � �� � (11)

One method of including the effect of electron-electron inter-
actions in the context of the above discussion is simply to in-
clude the electrostatic capacitance as well as the quantum ca-
pacitance, so that the wave velocity is not quite exactly equal to
the Fermi velocity:

��
������
� �
�

�

�������� �
�

�

����	 
�

���� � �� �

(12)
The ratio of the wave (plasmon) velocity in the absence of in-
teractions to the wave (plasmon) velocity in the presence of in-
teractions has a special significance in the theory of Luttinger
liquids, and is denoted by the letter “g”.

E. Characteristic impedance

Another property of interest of the nano-transmission line is
the characteristic impedance, defined as the ratio of the ac volt-
age to the ac current. This is especially important for measure-
ment purposes. The characteristic impedance of a (any) trans-
mission line with inductance per unit length � and capacitance
per unit length � is simply

�
���.

If one considers only the quantum capacitance and only the
kinetic inductance, the characteristic impedance turns out to be
the resistance quantum:

���
�
��
������
� �

�
��
�� �

�

���
� ���� ��� (13)

If one both considers both components of the capacitance (elec-
trostatic + quantum), then one finds:

����
������
� �

�
��
������ �

�
��
��	 

��
�� � �

�

���
� (14)

where we have inserted the definition of �.

15

10

5

0

R
ea

l (
 

)

302520151050
Frequency (GHz)

-5

0

5

Im
ag

. (
 

)

g = 0.5

50
40
30

20
10

0

R
ea

l (
 

)

302520151050
Frequency (GHz)

-20

0

20

Im
ag

. (
 

)

g = 0.25

Fig. 3. Predicted nanotube dynamical impedance for ohmic contact, for two
different values of g. We assume � � ��� ��, and� � �� ����

F. Damping Mechanisms?

An important question to consider is the damping of the 1d
plasma waves. Currently very little is known theoretically or
experimentally about the damping mechanisms. In the absence
of such knowledge, we model the damping as distributed re-
sistance along the length of the tube, with resistance per unit
length �. This model of damping of 2d plasmons we recently
measured[3] was successful in describing our experimental re-
sults, using the dc resistance to estimate the ac damping coeffi-
cient.

III. SPIN-CHARGE SEPARATION

A carbon nanotube, because of its band structure, has two
propagating channels[15]. In addition, the electrons can be
spin up or spin down. Hence, there are four channels in the
Landauer-Büttiker formalism language. In this section we dis-
cuss an effective high-frequency circuit model which includes
the contributions of all four channels, and makes the spin-
charge separation (the hallmark of a Luttinger liquid) clear and
intuitive.

The non-interacting ac circuit model (i.e., one neglecting the
electrostatic capacitance) of a single-walled carbon nanotube
is fairly straightforward: One simply has four quantum chan-
nels in parallel each with its own kinetic inductance and quan-
tum capacitance per unit length. All of the above calculations
would apply to that system, accept that there are four transmis-
sion lines in parallel.

When one includes the effect of electrostatic capacitance, the
four individual propagating modes all share the same capac-
itance to the ground plane, and hence become coupled. The
equations of motion for the four coupled transmission lines can
be diagonalized, and the eigenmodes become three spin waves
and one charged (voltage) wave. In reference [11], we show
that the circuit model of figure 1 is still valid as as an effective
circuit model for the charged mode if the kinetic inductance and
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Fig. 4. Predicted nanotube dynamical impedance in overdamped case. We
assume � � ��� ��,� � � �����, and � � ����.

quantum capacitance (but not the electrostatic capacitance) are
simply divided by four.

IV. NUMERICAL PREDICTIONS

Using the above described circuit description, we numeri-
cally calculate the complex, frequency dependent impedance
of an electrically contacted single nanotube (including the ef-
fects of spin) for two cases: high damping and low damping,
i.e. high and low resistance per unit length. In the low damping
limit, shown in figure 3, the predicted impedance has resonant
frequency behavior, corresponding to standing waves along the
length of the tube.

In the high-damping limit, shown in figure 4, the resonances
are washed out and one sees two limits. First, at dc the real
impedance is simply the resistance per length times the length,
i.e. ��, plus the Landauer-Buttiker contact resistance. The fre-
quency scale at which the impedance starts to change is given
by the inverse of the total capacitance (�������) times the total
resistance. At very high frequencies, the impedance becomes
equal to the characteristic impedance given in equation 14 (cor-
rected for the spin-charge effects discussed in section III). The
frequency at which this occurs is given by the inverse of the
effective “LR” time constant, which is the resistance per unit
length divided by the inductance per unit length.

V. CONCLUSIONS

We have derived an effective rf circuit model for a single
walled carbon nanotube, including the effects of kinetic induc-
tance as well as the electrostatic and quantum capacitance. The
nano-transmission line model we developed is a circuit descrip-
tion of a 1d plasmon, and as such is directly related to the long
postulated Luttinger liquid properties of 1d systems. Our next
step will be to experimentally test the validity of this circuit

model in either the frequency or time domain, and to develop
an rf circuit model for active nanotube devices.
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