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ABSTRACT  

In this paper we present a simple method to demonstrate quantum sensing of magnetic fields with nitrogen vacancy centers 
in diamond using an off the shelf, commercial confocal and super resolution (Airyscan) microscope and a microwave 
generator. The measurement is based on CW (continuous wave) optically detected magnetic resonance (ODMR). The 
noise is empirically analyzed. This should give a good indication of what labs can expect with readily available 
microscopes in any modern university setting. 
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1. INTRODUCTION  
In this paper we present a simple method to demonstrate quantum sensing of magnetic fields with nitrogen vacancy centers 
in diamond1 using an off the shelf, commercial confocal + super resolution2,3 microscope and a microwave generator. The 
measurement is based on CW (continuous wave) optically detected magnetic resonance (ODMR). The noise is empirically 
analyzed. This should give a good indication of what labs can expect with readily available microscopes in any modern 
university setting. 

2. MATERIAL AND METHOD 
Microwave setup 

Fig. 1a illustrates the microwave setup, which integrates a quantum sensing rack with a super-resolution microscope 
(ZEISS Airyscan LSM900). The quantum sensing rack generates and processes the microwave signal required for quantum 
experiments. A signal generator (Agilent N5181A) produces the initial signal, which is then amplified using a high-power 
amplifier (Mini-Circuits ZHL-16W-43-S+) and fine-tuned with a variable attenuator (Narda Microline 4704-99). To 
monitor the signal in real time, a 20 dB directional coupler (MAC Technology Inc.) and a spectrum analyzer (RIGOL 
DSA832E) are integrated into the setup at the output of the amplifier. All connections are established using SMA cables 
to ensure low-noise signal transmission and maintain system integrity. 

Fig. 1b illustrates a diagram of microwave setup. A custom-fabricated omega-shaped microwave loop antenna was 
designed specifically for ODMR measurements of NV center diamonds4. The antenna exhibits a resonance frequency of 
2.893 GHz with a bandwidth of 400 MHz, aligning precisely with the zero-field splitting frequency of the NV center. This 
configuration ensures efficient microwave delivery to the NV centers, optimizing the conditions for quantum state 
manipulation and measurement. To measure two peaks at 2.87 GHz, optimized +20 dBm output power was used for the 
ODMR measurement.  
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Figure 1. Integration of ODMR quantum sensing with super resolution microscope. a) Quantum sensing setup.  
b) Diagram of microwave setup. c) Schematic of the microwave antenna and NV center diamond. Subset is an omega loop 
antenna. d) Photoluminescent image of the NV center diamond 

NV Center Diamond and External Magnetic Field 

Fig. 1c shows a schematic of the omega-shaped antenna and the NV center diamond arrangement. NV center diamond 
powder (Adamas, MDNV15umHi30mg) was fixed to a coverslip (BIPEE, 12x12x0.13 mm) with a thin layer of CA super 
glue (Starbond, super fast thin) using the drop casting method. Then, the same super glue was used to fix it at the center 
of the omega loop antenna to ensure optimal interaction with the microwave field. To enable Zeeman splitting, a permanent 
magnet (N42, 10 × 4 × 2 mm) was placed directly above the antenna. Additional Zeeman splitting data with smaller 
magnetic fields generated by DC through a copper wire (AWG38) by adjusting current level were also measured. One 
novel method we developed is to deposit the nanodiamond directly on the copper wire creating the magnetic field. This 
has the advantage of keeping the quantum sensor as close as possible to the wire with minimal effort. 

Airyscan and signal generator setup  

We used the ZEISS in confocal mode, as the feature size did not require the Airyscan functionality. The ZEISS allows 
power to be set by the user as a percentage of full power (10 mW). We found an optimum power setting of 15% to excite 
NVs. To collect photoluminescence images while varying the microwave frequency from 2.7 to 3 GHz, synchronization 
between the Airyscan microscope and the signal generator is essential. After focusing on an NV center diamond, 201 
images were acquired at a rate of 10 images/second. The images were 128x128 pixels with a dwell time of 1.52 µs per 
pixel. The signal generator sweep function was configured with identical interval and step point values to facilitate 
frequency sweeps. Once both systems were aligned, time-series images were acquired by initiating the Airyscan time-
series function in tandem with the frequency sweep of the signal generator.  

Imaging Analysis 

The acquired time-series images were analyzed using FIJI (ImageJ) software. After importing the image series, the mean 
intensity of the entire field of view was calculated from the data and exported to a text file. The exported mean intensity 
data were subsequently plotted vs. microwave frequency using Igor Pro 9 software. 
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Figure 2. Laser and microwave power optimization. a) RF power optimization. +20 dBm shows the largest change with 
clear two peaks at 2.87 GHz. b) laser power optimization. The optimal laser power is 15% of 10 mW which had lowest 
standard deviation 

3. RESULTS 
ODMR vs optical, microwave power 

Fig. 2 presents the ODMR results at various RF and optical powers. The optimal RF power is about +20 dBm, which 
shows the largest change while having two peaks. The optimal optical power is about 15% of the maximum power (100% 
is 10 mW), which shows the largest change at the resonant frequency and the smallest standard deviation at off-resonant 
frequency.  

Zeeman splitting 

Fig. 3 presents the ODMR results at different magnetic field strengths, demonstrating 2 peaks due to the Zeeman splitting. 
The ODMR measurements as a function of magnetic field were taken using either a permanent magnet or a magnetic field 
generated by DC current through a nearby copper wire, and all luminescence intensity data were normalized (arbitrary 
units, a.u.). The magnetic field from the permanent magnet was estimated from the geometry, and the magnetic field from 
the wire was calculates from the DC current using the Biot-Savart law. 

Fig. 3a shows a typical Zeeman splitting pattern with up to eight peaks at an estimated magnetic field strength of 6.46 mT. 
In order to test a smaller magnetic field, the magnetic field was controlled through the DC current through wire in Fig. 3b. 
The field of view was adjusted to 20.46x20.46 µm which is slightly larger than the diamond size of 15 µm. By inspection 
by eye, the limit of detection (LOD) was 390 µT. In a second experiment, we zoomed in the field of view to be 8.25x8.25 
µm, corresponding to the interior of the NV diamond, which lowered the updated LOD (by eye) to 79 µT in Fig. 3c. 

Magnetic field sensitivity 

A proper calculation of the magnetic field sensitivy would require a quantitative relationship between the measured noise 
on the flourescence intensity and the estimated magnetic field.5 Here, we use a simple estimate for semi-quantitative 
purposes only. A full analysis will be published in the future. 

The way that confocal microscopy works is a serial (in time) set of flourescent intensities is measured, one intensity at 
each pixel. The pixel dwell time is 1.52 µs, and our image size is 128x128 pixels. To interpret this as an effective 
measurement time and bandwidth, one can estimate the total integration time as 128x128x1.52 µs=25 ms. However, we 
need roughly 10 images to see the Zeeman split peak location, in order to estimate the magnetic field. Therefore, the 
measurement bandwidth would be 1/250 ms = 4 Hz, and the empirical magnetic field noise is 79 µT/√(4 Hz)  
~ 40 µT /√Hz. 
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Figure 3. ODMR and Zeeman splitting. a) b) ODMR with a permanent magnet. Magnetic field strength was adjusted by 
changing the magnet position. c) ODMR with a variable magnetic field. A DC current through a copper wire was used to 
adjust magnetic field. d) ODMR with a wire in smaller ROI, 8.25x8.25 µm. Limit of detection was 79 µT.  

 

4. DISCUSSION 
Sensitivity comparison to state of the art 

This paper demonstrates a magnetic field sensitivity of 40 µT /√Hz. A sensitivity of ~ pT/√Hz  in (0.5 mm)3 = 10-10 m3 
volume is typical state of the art best case5,6. In order to compare to state of the art magnetic field sensing as apples to 
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apples, we need to normalize to the detection volume, i.e. the number of NV centers. We can either estimate the volume 
as one pixel, and use the total integration time (25 ms/image x 10 images), or we can estimate the volume as the total 
volume of pixels, and use the dwell term per pixel as the integration time. Above, we used the latter approach, so we will 
use that here also. Thus, our detection volume in Fig. 3c corresponds to 1 pixel, which we estimate as a diffraction limited 
cube of side 1 µm, for an effective volume of 10-18 m3. Scaling this to 10-10 m3 would give rise to √(108) less noise (since 
the noise scales as the square root of the number of NV centers, resulting in 4 nT /√Hz. This demonstrates what can readily 
be achieved in any modern lab with a confocal microscope and small amount of effort. 

5. CONCLUSION 
Several recent papers have provided detailed recipes for setting up quantum sensing and quantum state manipulation with 
NV sensors in diamond. Sewani et al7 provided complete, detailed instructions on how to create a tabletop quantum state 
manipulation setup, including coherent pulse manipulation and Rabi oscillations, on ensembles of NV centers for around 
$10k. A lower cost setup for under $500 to observe CW ODMR was presented by Zhang et al8. At the high end, Misonou 
et al9, and more recently Yuan et al10 provided detailed instructions for single NV center, single photon sensitive, quantum 
state manipulation with a home made confocal microscope for $100k or more. In contrast to those works, this paper 
presents a method to use an off-the shelf commercial confocal microscope, or an off the shelf super-resolution microscope, 
to develop experiments in quantum sensing with only a small amount of easily obtainable RF equipment. While we used 
a commercial RF generator, this could easily be replaced with a USB Windfreak (SynthUSB3) for around $400, and so 
the main cost would be the 1 Watt power amplifier, at around $2000. The antenna can be made cheaply in house or via 
one of a number of commercial PCB manufacturers for under $100. A disadvantage of this approach is the closed source 
nature of the ZEISS ecosystem. The user cannot get access to the photodector current, or the laser timing. This prevents 
time domain quantum state manipulation with this system. With the growth of emerging application of optical, room 
temperature quantum state manipulation in quantum sensing and quantum information, it would seem there would be a 
significant commercial opportunity for optical quantum state manipulation systems. We have found, in discussions with 
many different microscope manufacturers and optics companies, including household name companies as well as nimble 
startups with the world’s best super resolution systems, that they do not allow such access. Therefore, for time domain 
quantum state manipulation of optical spin-based quantum bits, to our knowledge, the only solution available as of this 
writing (February 2025) is to do it yourself, a project currently in progress in our lab. For applications where time domain 
quantum state manipulation is not needed, this paper presents a much easier route towards CW quantum sensing with off 
the shelf, readily available microscopes. 
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