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Abstract 

We present the design, fabrication, and impedance measurements of plasma wave detectors fabricated from 
GaAs/AlGaAs heterostructures. The design principles will allow broadband (dc to 7 GHz) measurements of the 
device power coupling and responsivity as a detector, which is a “scale model” of a THz plasma wave detector. We 
demonstrate clear resonance behavior in the impedance spectrum.  
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1. INTRODUCTION 

As the gate length of modern devices becomes comparable to the mean free path, electrons can move 
without scattering (ballistic transport) from source to drain. In a related phenomenon, when the frequency is larger 
than the scattering frequency, the transport is also ballistic in the sense that electrons move without scattering 
between electric field cycles. At room temperature, the scattering frequency is about 500 GHz, while at cryogenic 
temperatures, the frequency can be around 1 GHz because of the reduced phonon scattering. How does a high 
electron mobility transistor (HEMT) behave in this ballistic (ωτ>1) regime? The answer to this question is the realm 
of plasma wave electronics[1-12]. Such a broad class of devices could have many applications in military, medical, 
and biological applications such as remote standoff chemical and biological detection and species identification. 

Shur has a theory for the use of a HEMT in the ballistic limit as a detector of THz radiation[1-12]. In the 
proposed device, three conditions must be satisfied: 1) An ac voltage is applied to the gate, 2) The source is 
grounded at both ac and dc, and 3) The drain is an open circuit at ac, i.e. no ac current flows through the drain. 
Under these conditions, at resonant frequencies given by f = nvp/4Lgate (with vp the plasma wave velocity), a dc 
voltage develops at the drain, hence the device performs as a detector. In order to readout this dc voltage, the drain 
must be contacted at dc. Such a device is named a plasma wave detector. In this paper we discuss the design, 
fabrication, and impedance of a device that realize these conditions. 

To date, responsivity measurements have been performed at fixed frequencies in the THz range of such 
devices[1-12]. These initial measurements are significant and important. However these initial experiments did not 
allow for swept frequency broadband measurements, and did not quantitatively determine the power coupling from 
the ac generator to the device. It is the purpose of this work to design experiments that allow swept-frequency 
measurements and quantitative power coupling measurements in order to quantitatively determine the intrinsic 
device performance over a broad range of frequencies. In order to do this, we perform measurements on long 
HEMTs at cryogenic temperatures so that the resonant frequencies are in the microwave (dc-10 GHz) frequency 
range. 

It is the purpose of this paper to describe the design, fabrication, and initial impedance matching 
measurements of such a plasma wave detector. We achieve a broadband ac open circuit at the drain by using a long, 
highly resistive thin strip of NiCr on chip, which allows us to make dc contact to the drain in order to measure the 
responsivity while at the same time preventing ac current from flowing into the drain. In addition, we measure the 
gate-source impedance vs. frequency in order to determine the power coupling to our 50 Ω system. This will allow 
future quantitative tests of Shur’s theory of plasma wave detectors. 
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Fig. 1: Diagram and ac circuit model for a plasma wave detector. The drain is contacted at dc (not shown). 

 

2. THEORY AND BACKGROUND 

In this paper, we consider the ac equivalent circuit of the geometry shown in Fig. 1. In this case, an ac 
voltage is applied to the gate while the source is grounded. (No ac current flows through the drain). We recently 
showed[13, 14] that from diffusive (ωτ<1) to ballistic transport (ωτ>1), the ohmic contact impedance of a two 
dimensional electron gas is real and independent of the frequency in the microwave range if the mobility is higher 
than 500,000 cm2/V-s. If the source contact resistance (Rsource-contact) is ohmic, the impedance of the gated two 
dimensional electron gas[15] can be written as 

( )( )2EDG k
gate-source source-contact gate 2DEG k

R +iωL
Z = R + coth L R +iωL iωC

iωC
.   (1) 

This impedance determines how much power is absorbed by the device and hence its responsivity as a detector.  

At high frequency, Real (Zgate-source) shows resonance peaks at the fundamental frequency (fpeak=vp / 2Lgate) 
and its harmonics. In this model, the plasma wave velocity is given by: 

2

p peak gate *
v  = f 2L

ne d

m ε= ,     (2) 

where n is the density, d the depth down, and ε the dielectric constant.
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Table 1. Summary of measured values from wafer (nominal) and devices. 

Sample Electron 

density 

(/cm2) 

Nominal 

Mobility 

(cm2/Vs) 

R2DEG  

(Ω) 

Rsd 

(Ω) 

Rcontact 

(Ω) 

τnominal ≡ µm*/e 

(ps) 

1 1.13 1011 3.26 106 68  120 (±15)  52 (±15) 120 

2 2.06 1011 6.00 106 22    70 (±20)   48 (±20) 230 

 

3. FABRICATION 

The plasma wave detector is fabricated from GaAs/AlGaAs modulation doped single quantum well 
heterostructure grown by molecular beam epitaxy The gate length (Lgate) is 200 µm and the width is 50 µm. The 
depth of the 2DEG is 1900 Å. Two samples with the same geometry but different electron density and mobility were 
prepared. Table 1 shows the nominal mobility and electron density based on dc measurements. Because of the large 
dc series resistance of the NiCr, dc measurements of the source-drain resistance and contact resistance are 
approximate. 

After MBE growth, a mesa is defined with wet etching. The mesa size is 50µm × 200µm and the depth of 
the mesa is ~8000Å. Ni/Ge/Au/Ni/Au ohmic metallization (80:270:540:140:2000Å) is carried out by electron beam 
evaporation. Rapid thermal annealing follows after metallization for 12 min. at 440℃. Ti/Au (300:3000Å) 
metallization is used to form the gate. The narrow strip (20µm × 1500µm) of NiCr (80-20 wt %) (200Å /800Å) is 
deposited from the drain in order to have pure resistance (~ 1 kΩ) with little capacitance to ground. Before the 
measurement, a red light is illuminated on sample 2 for 2 min in order to achieve the necessary electron density and 
mobility; sample 1 is used without light illumination. A device image is shown in Fig. 2. 
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Fig. 2: Measurement setup for impedance. 
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4. MEASUREMENTS 

In order to characterize the plasma wave detector, we measure the impedance of two devices with different 
mobility and electron density. The dc impedance is measured with a lock-in amplifier. We measure total resistance 
of source to drain (Rsd=Rcontact + R2DEG) and the NiCr film in series. The NiCr film resistance is estimated from dc 
sheet resistance measurements at 4 K. All measurements were performed at 4 K.  

For the ac measurement, the sample is mounted at the end of 50 Ω matched microstrip line and soldered 
with indium into place. The reflection coefficient (S11=Vreflected/Vincident) of the sample is measured by a network 
analyzer (Agilent 8270 ES) from 50 MHz to 7 GHz at 100 nW. The impedance is characterized by inverting the 
reflection coefficient (S11= [Z (ω)-50]/ [Z (ω) +50]). The detailed calibration technique was presented in a previous 
report[13]. A gate bias can be applied through a bias tee during the measurement. Figs. 1 and 2 show the impedance 
and measurement setup respectively.  

5. RESULTS AND DISCUSSION 

Fig.3 shows the real impedance of sample 1 as a function of frequency. Re(Z(ω)) shows clear plasma wave 
resonances. The measured resonance peaks (fpeak) occur at around 2.2 and 4.5 GHz respectively, which satisfy the 
expectation from equation 2. The measured Re (Z(ω)) agrees with the theoretical expectation of equation 1 when the 
source contact resistance (Rsource_ontact) is 27 Ω. 
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Fig. 3: Impedance of plasma wave detector with nominal mobility (3.26 106cm2/V-s). 
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Fig. 4: Impedance of plasma wave detector with mobility (6.00 106cm2/V-s). 

Fig.4 shows the measured Re(Z(ω)) of sample 2 and the theoretical expectation. Re(Z(ω)) shows resonance 
peaks at 3.2 GHz and 6 GHz, which agrees with equation 2. When we use Rsource-contact as 24 Ω, the measured values 
and theoretical expectation agree with each other over the entire frequency range. The results from both samples are 
summarized in Table 2. In all cases, we have quantitatively determined the power coupling to the device over a 
broad range of frequencies. 

Table 2. Summary of measured values with same geometry (50µm×200µm) 

Sample Electron 

density 

(/cm2) 

Nominal 

Mobility 

(cm2/Vs) 

ffeak  

(GHz) 

Vp 

(m/s) 

Rsource-contact 

(Ω) 

Lk 

(µH/m) 

C 

 (nF/m) 

1 1.13 1011 3.26 106 2.2    0.9 106           27 (±7) 40 28 

2 2.06 1011 6.00 106 3    1.2 106           24 (±10) 23 28 

 

6. CONCLUSIONS 

We have presented the design, fabrication, and impedance matching measurements of a plasma wave 
detector. Future measurements will allow quantitative, broadband, frequency dependent responsivity measurements 
to be performed in order to ascertain intrinsic device performance as a plasma wave detector. 
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