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1 Introduction

This document discusses the frequency dependent electrical properties of single
layer 2DEGs, 2DEGs covered by a gate, and double layer 2DEGs.

2 Single layer conductivity
The Drude formula for the frequency dependent conductivity o(w) is

1€ Tmom 1

(1)

olw) = m 14+ iwTmom
with n the density, e the electron charge, m the effective mass, and 7,0y, the mo-
mentum scattering time. This can be inverted to find the frequency dependent
resistivity p(w):
m .

p((JJ) = m <]. + Zmeom) . (2)
Numerically, for electrons in GaAs, a mobility of 10¢ em?/V — s corresponds to
a value for 7,0, of 38 ps; then wTmom = 1 atf =4 GHz. Equation 2 is the sum
of a real and an imaginary term. The real term is the resistance. The imaginary
term is proportional to the frequency, and hence appears as an inductance. The
inductance is referred to as the kinetic inductance, since the inductive energy
(1 LI?) is stored in the kinetic energy ($mv?) of the electrons. This is in contrast

to the more familiar magnetic inductance, where the inductive energy is stored
in the magnetic field ([ B*d*z).

3 Capacitively contacted single layer

When a 2DEG is covered by a highly conducting metallic gate, the equivalent
electrical circuit is shown in figure 1. Here there is a certain inductance L,
capacitance C, and resistance R per unit length. This is the standard circuit
diagram for transmission line theory, and waves can propagate in both direc-
tions. Note that 7,,m, is simply given by L/R in this picture. The voltage along



Figure 1: Capacitively contacted 2DEG.

the metal plate is constant in this picture. (If one were to include the magnetic
inductance, then this would no longer be true.) The complex impedance from
point 1 to point 4 Z;4 can be determined as follows: Z14 = Zs4, since the metal
is an equipotential. Now, Zs4 is just the input impedance of a lossy transmis-
sion line, which is included in any textbook on microwaves or transmission lines.
Thus,

Z14 = Z.coth(yl), (3)

where [ is the length of the system, Z, the (complex) characterstic impedance

defined as
R+ iwL
Ze =\ ———, 4
wC )

and v the (complex) propagation constant, defined as
v =+ (R+iwL)(iwC). (5)

~v and Z. are complex due to the dissipation. A wave travelling in one direction
will decay in amplitude exponentially with a length scale given by the real part
of 7v. The limit of weak damping is defined in standard microwave theory as
R <« wL. This is equivalent to wTmom > 1 in our case. In that limit, the decay
length is approximately equal to:

l

N[z

(6)

N | =

;elmy = real(y) =

In that limit also, Z. = \/L/C. The low frequency limit of equation 3 is:

1 1 1
R z
iwCy T3ty

lim (Z,,) = iwLy — 4—15wRTCTRT oW, (7)
where Rp, Ly, and Cp are the total resistance, inductance, and capacitance,
respectively. Thus, the dc limit is mainly a capacitor (as expected) plus some
inductance and resistance.

In terms of the mobility u, the areal density n, the width w, and the distance
from the 2DEG to the metal gate d, (where the g refers to the gate), R, L, and
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Figure 2: Impedance vs. frequency for capacitive contact. The parameters used
were: 1=10 pym, w=10 um, d, = 5000 4, p =2 10%cm?/V —s,n=1.5 10" em=2.

C are given by:

B 62 Q/pum
R = n(10Mem=2) p(108em?/V — s) w(um) ®)
Lint]pm) = n(l(?l?fn?i[)/l:unZum) )
C = 116 10°° pF/um w/d, (10)

The characteristic impedance, in the low damping limit, becomes:

1426 Q | d,y(1000 A)

= 11
w(pm) \l n(101em—2) (1)

The propagation constant also defines a wave velocity, and it is given by
vy = \/dg(IOOO A) n(10em=—2) 0.6 105m/s. (12)

v,y refers to the wave velocity of a 2DEG under the gate. Note that this speed is
typically two orders of magnitude slower than the speed of light. This is because
the kinetic inductance is much larger than the magnetic inductance, slowing the
wave down. Finally, the decay length can be written as

liccay = 2VgTmom = 46 pm \/dg(moo A) n(10*em—2) p(108em?/V —s) (13)



Figure 3: Double quantum well equivalent circuit.

We plot in figure 2 the contact impedance for a typical geometry, mobility, and
density. Each additional peak vs. frequency corresponds to fitting one more
wavelength into the effective resonator.

4 Double layer transmission line

A double well system also forms a transmission line. The equivalent circuit is
given in figure 3. Below we discuss various ways of exciting this transmission
line, and calculate the impedance for each of three cases. We calculate Z;3,
Z14, and Zs4. We have included the tunnel conductance G per length, and
modeled it as a linear conductance. For the following boundary conditions, the
differential equation to be solved can be cast in the following form:

82VCM
= 14
92 0 (14)
0%V,
872[) - 'ngVD = 0 (15)
V3w = 2(R+iwLl)(G +iw0) (16)
1 /R+iwlL
Zc w = —=A\A - ~ 1
¢ V2V G +iwC (17)
1 1
Viw = —= e, 18
d 5 7TC (18)
where
VCM = ‘/;top + ‘/bottom (19)
VD = ‘/;top - ‘/bottom- (20)

Note that these differential equations include a decay length which applies for
all frequencies, including dc. The dc limit cannot be taken as the low-damping
limit. Rather, one finds that 4, becomes entirely real, giving a dc decay length
of

l;cldemy = real(Yaw) = V2RG. (21)



Thus, a dc voltage difference across the layers will decay exponential in position,
due to the tunneling current “shorting” out the two layers. The ac decay length
for the double well system can be calculated in the weak damping limit. For
non-zero tunnel conductance, the weak damping limit is defined as both R <« wL
and G <€ wC. The first of these conditions is again equivalent to w7yom > 1;
the second condition is an additional constraint. If both constraints are met,
the ac decay length is given by

1 R
2chw

lz;cl decay = real(’ydw) = + G ZC dw- (22)
For photon assisted tunneling, one would like a dc equipotential, i.e. long dc
decay length. The absorption of ac power occurs on a length scale given by the
ac decay length, so that should be shorter than the dc decay length. The ratio
of the two lengths is given by

ldc decay 1 1 R G

— = — \| =+ Ze awy/ = |- 23

lac decay \/5 2Zc dw G ¢ v R ( )
There is an interesting case, when the ac dissipation is due equally to tunneling
and in plane resistance. In that case,

I Sy _ Zc dw 1
ac decay — ldc decay — R - 2G,ZC dw .

(24)

In all other cases, the ac decay length is longer than the dc decay length. As the
tunneling gets stronger than the critical value, the ac dissipation is mostly due
to the tunnel conductance, and the decay lengths both shorten. As the tunnel
strength gets weaker than the critical limit, all the decay lengths lengthen, and
the ac dissipation is due mostly to the in plane resistance.

The characteristic impedance Z. 4., the wave velocity vg,, (dw for the double
well wave), and the ac decay length due to in plane resistance are given in terms
of 2DEG parameters by:

1000 Q[ gy (1000 A)
Zedw = 2
¢ w(pm) | n(10tem=2) (25)

vaw = \/daw(1000 A) n(10' em=2) 0.42 10°m/s (26)

lac decay = 20awTmom = 32 pm /da (1000 4) n(101em=) p(10%em?/V (23)

Here n is the single layer density, dg,, is the distance between the double wells.
There is an intesting relationship between the Fermi velocity and the wave speed:

L (28)
VUFermi ap ’

where ap is the Bohr atomic radius of an electron in GaAs, ~ 100 A. Therefore,
the ac decay length due to in plane resistance and the mean free path are related



by:

lac decay — 2'Udu/rmom -9 a_B (29)
mfp UFermiTmom V daw
Samples which are less than lo; gecay in length then are also in the mesoscopic
regime, since the mean free path is comparable to lac decay-
The tunnel conductance also contributes to the ac decay length. We can
model the tunnel conductance dependence on tunnel barrier thickness based on

previous experiments. Using the experimental tunnel resistance of 250 k€2 in
250x250 um? for a 175 A barrier, and the tunnel conductance decay length of

7.2 A, we find:
0.435 Q dp
Rivnnet = ——~ — ), 30
funnel A(um?) e:vp<7.2 A) (30)

where A is the area, and dp is the tunnel barrier thickness. This is a different
quantity than dg,,, which is the distance which determines the capacitance. (We
use the center-to-center distance for dg,.) Thus, G can be written as:

—dg
mho/um w(um) emp<7.2 A) (31)

Thus, the dc decay length (21) can be written as:

lic decay = 0.059um /n(10em=2) p(106cm?/V — s) emp<14de>. (32)

Thus, for an 85 A tunnel barrier with n=2.5 10"'em =2 and p=2 106em?/V — s,
we get lge decay = 48 pm. The ac decay is given by

-1

! = <32 wim \/ddw(IOOO A) n(10Mem=2) pu(10%em? )V — s)> (33)

ac decay

d n(10110m2)>1

+ (435107 - -
< pm exp (o) (1000 A)

In the crossover case, we have:

lac decay = ldc decay = 16 pm pu(108em? /V — s) \/ddw(1000 A) n(10'tem—2).
(34)
The condition for the crossover is:

. —d
(1000 A) 11(10%em/V — 5) ea:p(”—gl) =13.48 10°°. (35)

For d=400 A and p = 2 10%cm?®/V — s, we need dp = 80 A.



4.1 Boundary condition one

In this section, we calculate Z;3. This is very simple, since we are only excit-
ing the differential mode. Thus, the impedance is given by equation 3, with
the appropriate redefinition of the propagation constant -4, and characteristic
impedance Z. g,:

Z13 = Ze quwcoth(Yawl). (36)

For impedance matching to antennas, this is good. The source impedance is
usually of order Zy/,/€uvy (= 105  for Si), where €4, is the average dielectric
constant of vacuum and the dielectric lens, and Z; = 377 2 is the charac-
teristic impedance of free space. For example, the source impedance of self-
complimentary antennas (which have broadband frequency response) is 114 Q
on quartz. In order to achieve maximum coupling between the device and the
incoming beam, the device impedance should be equal to the complex conju-
gate of the source impedance. Broadband matching to the device is easiest if the
device impedance is real and of order 100 Q. If I > l,c dgecay, then equation 36
predicts the impedance seen by the antenna is simply Z. 4, (since coth(z) — 1
for large x), which can easily be made 100 €2 simply by adjusting the width to
be about 10 uym. A wave launched onto terminals 1,3 will simply propagate
until it has decayed away, and never come back. The challenge is to connect an
antenna to point 1,3 in figure 3.

4.2 Boundary condition two

In this section, we calculate Z;5. This is a little complicated, and requires solving
for the position dependent voltage and current on the line for the boundary
condition of a generator at point 1 with point 2 grounded. The ratio of the
voltage to the current at point 1 defines the impedance, and we find:

1 w
Ziy = UL + R) + Zc awtanh (le> : (37)

In the limit w — 0, we find Z15 — [(iwL + R), as expected. In that limit, the
impedance becomes that of the single layer, since the other layer is isolated at
dc. If there is no dissipation, than Z;5 will have an average rise with frequency,
modulated by a strongly frequency dependent term. When there is dissipation,
the strength of the resonant modulation gets damped, depending on the ratio
of the length of the double well system to the ac decay length. In figure 4, we
plot the impedance vs. frequency for a representative geometry, mobility, and
density. One sees that the high frequency limit is essentially that of an inductor.
Each additional peak with increasing frequency corresponds to fitting one more
wavelength into the resonator.
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Figure 4: Impedance vs. frequency, point 1 to point 2. The parameters used
were: 1=10 pm, w=10 pum, dg, = 400 A, p = 2 10%cm?/V —s, n=1.5 10 em =2,
no tunneling.

4.3 Boundary condition three

The calculation of Z14 is similar to that in the previous section. We find:
1 l
AV §l(iwL +R) + Z, dwcoth(%). (38)

The dc limit is more complicated than a capacitor, but the imaginary part
tends to —oo, as expected. The high frequency limit is again an inductor. A
representative plot is given in figure 5.

5 More complicated geometries

All of the above considerations can be used to connect more complicated systems
in networks. For systems smaller than the wavelength of light, the impedance
of a network of elements in a plane adds according to standard circuit theory.
However, “stacking” elements such as putting a gate on top of or below (or
both!) of a double layer system will change the effective wave equation and
boundary conditions, and the above calculations will not apply.
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Figure 5: Impedance vs. frequency, point 1 to point 4. The parameters used
were: 1=10 pm, w=10 pum, dg,, = 400 A, p = 2 10%cm? /V —s, n=1.5 10*tem 2,
no tunneling.



