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� Introduction

This document discusses the frequency dependent electrical properties of single
layer �DEGs� �DEGs covered by a gate� and double layer �DEGs�

� Single layer conductivity

The Drude formula for the frequency dependent conductivity ���� is

���� �
ne��mom

m

�

� � i��mom
� ���

with n the density� e the electron charge� m the e	ective mass� and �mom the mo

mentum scattering time� This can be inverted to �nd the frequency dependent
resistivity �����
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�
� � i��mom

�
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Numerically� for electrons in GaAs� a mobility of �
� cm��V � s corresponds to
a value for �mom of �� ps� then ��mom � � at f � � GHz� Equation � is the sum
of a real and an imaginary term� The real term is the resistance� The imaginary
term is proportional to the frequency� and hence appears as an inductance� The
inductance is referred to as the kinetic inductance� since the inductive energy
� �
�
LI�� is stored in the kinetic energy � �

�
mv�� of the electrons� This is in contrast

to the more familiar magnetic inductance� where the inductive energy is stored
in the magnetic �eld �

R
B�d�x��

� Capacitively contacted single layer

When a �DEG is covered by a highly conducting metallic gate� the equivalent
electrical circuit is shown in �gure �� Here there is a certain inductance L�
capacitance C� and resistance R per unit length� This is the standard circuit
diagram for transmission line theory� and waves can propagate in both direc

tions� Note that �mom is simply given by L�R in this picture� The voltage along
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Figure �� Capacitively contacted �DEG�

the metal plate is constant in this picture� �If one were to include the magnetic
inductance� then this would no longer be true�� The complex impedance from
point � to point � Z�� can be determined as follows� Z�� � Z��� since the metal
is an equipotential� Now� Z�� is just the input impedance of a lossy transmis

sion line� which is included in any textbook on microwaves or transmission lines�
Thus�

Z�� � Zccoth��l�� ���

where l is the length of the system� Zc the �complex� characterstic impedance
de�ned as

Zc �
r

R� i�L

i�C
� ���

and � the �complex� propagation constant� de�ned as

� �
p
�R� i�L��i�C�� ���

� and Zc are complex due to the dissipation� A wave travelling in one direction
will decay in amplitude exponentially with a length scale given by the real part
of �� The limit of weak damping is de�ned in standard microwave theory as
R� �L� This is equivalent to ��mom � � in our case� In that limit� the decay
length is approximately equal to�

l��decay � real��� �
�

�

R

Zc
� ���

In that limit also� Zc �
p
L�C� The low frequency limit of equation � is�

lim
���

�Z��� �
�

i�CT
�

�

�
RT �

�

�
i�LT �

�

��
�RTCTRT � 	����� ���

where RT � LT � and CT are the total resistance� inductance� and capacitance�
respectively� Thus� the dc limit is mainly a capacitor �as expected� plus some
inductance and resistance�

In terms of the mobility 
� the areal density n� the width w� and the distance
from the �DEG to the metal gate dg �where the g refers to the gate�� R� L� and
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Figure �� Impedance vs� frequency for capacitive contact� The parameters used
were� l��
 
m� w��
 
m� dg � �
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The characteristic impedance� in the low damping limit� becomes�

Zc �
���� �

w�
m�

s
dg��
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��cm���
����

The propagation constant also de�nes a wave velocity� and it is given by

vg �
q
dg��


 �A� n��
��cm��� 
�� �
�m�s� ����

vg refers to the wave velocity of a �DEG under the gate� Note that this speed is
typically two orders of magnitude slower than the speed of light� This is because
the kinetic inductance is much larger than the magnetic inductance� slowing the
wave down� Finally� the decay length can be written as

ldecay � �vg�mom � �� 
m
q
dg��
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Figure �� Double quantum well equivalent circuit�

We plot in �gure � the contact impedance for a typical geometry� mobility� and
density� Each additional peak vs� frequency corresponds to �tting one more
wavelength into the e	ective resonator�

� Double layer transmission line

A double well system also forms a transmission line� The equivalent circuit is
given in �gure �� Below we discuss various ways of exciting this transmission
line� and calculate the impedance for each of three cases� We calculate Z���
Z��� and Z��� We have included the tunnel conductance G per length� and
modeled it as a linear conductance� For the following boundary conditions� the
di	erential equation to be solved can be cast in the following form�

��VCM
�x�

� 
 ����

��VD
�x�

� ��dwVD � 
 ����

��dw � ��R� i�L��G� i�C� ����

Zc dw �
�p
�

r
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G� i�C
����

vdw �
�p
�

�p
LC

� ����

where

VCM � Vtop � Vbottom ����

VD � Vtop � Vbottom� ��
�

Note that these di	erential equations include a decay length which applies for
all frequencies� including dc� The dc limit cannot be taken as the low
damping
limit� Rather� one �nds that �dw becomes entirely real� giving a dc decay length
of

l��dc decay � real��dw� �
p
�RG� ����

�



Thus� a dc voltage di	erence across the layers will decay exponential in position�
due to the tunneling current �shorting� out the two layers� The ac decay length
for the double well system can be calculated in the weak damping limit� For
non
zero tunnel conductance� the weak damping limit is de�ned as both R� �L
and G � �C� The �rst of these conditions is again equivalent to ��mom � ��
the second condition is an additional constraint� If both constraints are met�
the ac decay length is given by

l��ac decay � real��dw� �
�

�

R

Zc dw
�G Zc dw� ����

For photon assisted tunneling� one would like a dc equipotential� i�e� long dc
decay length� The absorption of ac power occurs on a length scale given by the
ac decay length� so that should be shorter than the dc decay length� The ratio
of the two lengths is given by

ldc decay

lac decay
�

�p
�

�
�

�Zc dw

r
R

G
� Zc dw

r
G

R

�
� ����

There is an interesting case� when the ac dissipation is due equally to tunneling
and in plane resistance� In that case�

lac decay � ldc decay �
Zc dw

R
�

�

�GZc dw
� ����

In all other cases� the ac decay length is longer than the dc decay length� As the
tunneling gets stronger than the critical value� the ac dissipation is mostly due
to the tunnel conductance� and the decay lengths both shorten� As the tunnel
strength gets weaker than the critical limit� all the decay lengths lengthen� and
the ac dissipation is due mostly to the in plane resistance�

The characteristic impedance Zc dw� the wave velocity vdw �dw for the double
well wave�� and the ac decay length due to in plane resistance are given in terms
of �DEG parameters by�

Zc dw �
�
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Here n is the single layer density� ddw is the distance between the double wells�
There is an intesting relationship between the Fermi velocity and the wave speed�

vdw
vFermi

�

r
ddw
aB

� ����

where aB is the Bohr atomic radius of an electron in GaAs� � �

 �A� Therefore�
the ac decay length due to in plane resistance and the mean free path are related

�
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Samples which are less than lac decay in length then are also in the mesoscopic
regime� since the mean free path is comparable to lac decay�

The tunnel conductance also contributes to the ac decay length� We can
model the tunnel conductance dependence on tunnel barrier thickness based on
previous experiments� Using the experimental tunnel resistance of ��
 k� in
��
x��
 
m� for a ��� �A barrier� and the tunnel conductance decay length of
��� �A� we �nd�

Rtunnel �

���� �

A�
m��
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�
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��� �A

�
� ��
�

where A is the area� and dB is the tunnel barrier thickness� This is a di	erent
quantity than ddw� which is the distance which determines the capacitance� �We
use the center
to
center distance for ddw�� Thus� G can be written as�

G � ��� mho�
m w�
m� exp

� �dB
��� �A

�
����

Thus� the dc decay length ���� can be written as�

ldc decay � 
�
��
m
p
n��
��cm��� 
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Thus� for an �� �A tunnel barrier with n���� �
��cm�� and 
�� �
�cm��V � s�
we get ldc decay � �� 
m� The ac decay is given by
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In the crossover case� we have�

lac decay � ldc decay � �� 
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�cm��V � s�
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The condition for the crossover is�
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For d��

 �A and 
 � � �
�cms�V � s� we need dB � �
 �A�
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��� Boundary condition one

In this section� we calculate Z��� This is very simple� since we are only excit

ing the di	erential mode� Thus� the impedance is given by equation �� with
the appropriate rede�nition of the propagation constant �dw and characteristic
impedance Zc dw�

Z�� � Zc dwcoth��dwl�� ����

For impedance matching to antennas� this is good� The source impedance is
usually of order Z��

p
�avg �� �
� � for Si�� where �avg is the average dielectric

constant of vacuum and the dielectric lens� and Z� � ��� � is the charac

teristic impedance of free space� For example� the source impedance of self

complimentary antennas �which have broadband frequency response� is ��� �
on quartz� In order to achieve maximum coupling between the device and the
incoming beam� the device impedance should be equal to the complex conju

gate of the source impedance� Broadband matching to the device is easiest if the

device impedance is real and of order �

 �� If l 
 lac decay� then equation ��
predicts the impedance seen by the antenna is simply Zc dw �since coth�x�� �
for large x�� which can easily be made �

 � simply by adjusting the width to
be about �
 
m� A wave launched onto terminals ��� will simply propagate
until it has decayed away� and never come back� The challenge is to connect an
antenna to point ��� in �gure ��

��� Boundary condition two

In this section� we calculate Z��� This is a little complicated� and requires solving
for the position dependent voltage and current on the line for the boundary
condition of a generator at point � with point � grounded� The ratio of the
voltage to the current at point � de�nes the impedance� and we �nd�

Z�� �
�

�
l�i�L�R� � Zc dwtanh

�
�dwl

�

�
� ����

In the limit � � 
� we �nd Z�� � l�i�L� R�� as expected� In that limit� the
impedance becomes that of the single layer� since the other layer is isolated at
dc� If there is no dissipation� than Z�� will have an average rise with frequency�
modulated by a strongly frequency dependent term� When there is dissipation�
the strength of the resonant modulation gets damped� depending on the ratio
of the length of the double well system to the ac decay length� In �gure �� we
plot the impedance vs� frequency for a representative geometry� mobility� and
density� One sees that the high frequency limit is essentially that of an inductor�
Each additional peak with increasing frequency corresponds to �tting one more
wavelength into the resonator�
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Figure �� Impedance vs� frequency� point � to point �� The parameters used
were� l��
 
m� w��
 
m� ddw � �
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no tunneling�

��� Boundary condition three

The calculation of Z�� is similar to that in the previous section� We �nd�

Z�� �
�

�
l�i�L�R� � Zc dwcoth

�
�dwl

�

�
� ����

The dc limit is more complicated than a capacitor� but the imaginary part
tends to ��� as expected� The high frequency limit is again an inductor� A
representative plot is given in �gure ��

� More complicated geometries

All of the above considerations can be used to connect more complicated systems
in networks� For systems smaller than the wavelength of light� the impedance
of a network of elements in a plane adds according to standard circuit theory�
However� �stacking� elements such as putting a gate on top of or below �or
both�� of a double layer system will change the e	ective wave equation and
boundary conditions� and the above calculations will not apply�
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Figure �� Impedance vs� frequency� point � to point �� The parameters used
were� l��
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